package org.opentrafficsim.demo.carFollowing; import java.awt.Frame; import java.awt.geom.Rectangle2D; import java.rmi.RemoteException; import java.util.ArrayList; import java.util.LinkedHashMap; import java.util.Map; import java.util.Random; import javax.naming.NamingException; import javax.swing.JPanel; import javax.swing.SwingUtilities; import nl.tudelft.simulation.dsol.SimRuntimeException; import nl.tudelft.simulation.dsol.gui.swing.TablePanel; import nl.tudelft.simulation.dsol.simulators.SimulatorInterface; import org.opentrafficsim.core.car.LaneBasedIndividualCar; import org.opentrafficsim.core.dsol.OTSDEVSSimulatorInterface; import org.opentrafficsim.core.dsol.OTSModelInterface; import org.opentrafficsim.core.dsol.OTSSimTimeDouble; import org.opentrafficsim.core.geometry.OTSGeometryException; import org.opentrafficsim.core.geometry.OTSPoint3D; import org.opentrafficsim.core.gtu.GTUException; import org.opentrafficsim.core.gtu.GTUType; import org.opentrafficsim.core.gtu.animation.DefaultCarAnimation; import org.opentrafficsim.core.gtu.animation.GTUColorer; import org.opentrafficsim.core.gtu.following.GTUFollowingModel; import org.opentrafficsim.core.gtu.following.IDM; import org.opentrafficsim.core.gtu.following.IDMPlus; import org.opentrafficsim.core.gtu.lane.changing.AbstractLaneChangeModel; import org.opentrafficsim.core.gtu.lane.changing.Egoistic; import org.opentrafficsim.core.network.NetworkException; import org.opentrafficsim.core.network.OTSNode; import org.opentrafficsim.core.network.factory.LaneFactory; import org.opentrafficsim.core.network.lane.Lane; import org.opentrafficsim.core.network.lane.LaneType; import org.opentrafficsim.core.network.route.CompleteRoute; import org.opentrafficsim.core.network.route.CompleteLaneBasedRouteNavigator; import org.opentrafficsim.core.unit.AccelerationUnit; import org.opentrafficsim.core.unit.LengthUnit; import org.opentrafficsim.core.unit.SpeedUnit; import org.opentrafficsim.core.unit.TimeUnit; import org.opentrafficsim.core.value.vdouble.scalar.DoubleScalar; import org.opentrafficsim.graphs.FundamentalDiagram; import org.opentrafficsim.simulationengine.AbstractWrappableSimulation; import org.opentrafficsim.simulationengine.WrappableSimulation; import org.opentrafficsim.simulationengine.properties.AbstractProperty; import org.opentrafficsim.simulationengine.properties.ProbabilityDistributionProperty; import org.opentrafficsim.simulationengine.properties.PropertyException; import org.opentrafficsim.simulationengine.properties.SelectionProperty; /** * Demonstrate the FundamentalDiagram plot. *

* Copyright (c) 2013-2015 Delft University of Technology, PO Box 5, 2600 AA, Delft, the Netherlands. All rights * reserved.
* BSD-style license. See OpenTrafficSim License. *

* $LastChangedDate$, @version $Revision$, by $Author: pknoppers * $, initial version 17 dec. 2014
* @author Peter Knoppers */ public class FundamentalDiagrams extends AbstractWrappableSimulation implements WrappableSimulation { /** the model. */ private FundamentalDiagramPlotsModel model; /** Create a FundamentalDiagrams simulation. */ public FundamentalDiagrams() { try { this.properties.add(new SelectionProperty("Car following model", "The car following model determines " + "the acceleration that a vehicle will make taking into account nearby vehicles, " + "infrastructural restrictions (e.g. speed limit, curvature of the road) " + "capabilities of the vehicle and personality of the driver.", new String[]{"IDM", "IDM+"}, 1, false, 500)); this.properties.add(new ProbabilityDistributionProperty("Traffic composition", "Mix of passenger cars and trucks", new String[]{"passenger car", "truck"}, new Double[]{0.8, 0.2}, false, 10)); } catch (PropertyException exception) { exception.printStackTrace(); } } /** {@inheritDoc} */ @Override public final void stopTimersThreads() { super.stopTimersThreads(); this.model = null; } /** * Main program. * @param args String[]; the command line arguments (not used) * @throws SimRuntimeException on ??? * @throws RemoteException on communications failure */ public static void main(final String[] args) throws RemoteException, SimRuntimeException { // Create the simulation and wrap its panel in a JFrame. It does not get much easier/shorter than this... SwingUtilities.invokeLater(new Runnable() { @Override public void run() { try { FundamentalDiagrams fundamentalDiagrams = new FundamentalDiagrams(); fundamentalDiagrams.buildSimulator(fundamentalDiagrams.getProperties(), null, true); } catch (RemoteException | SimRuntimeException | NamingException exception) { exception.printStackTrace(); } } }); } /** {@inheritDoc} */ @Override protected final OTSModelInterface makeModel(final GTUColorer colorer) { this.model = new FundamentalDiagramPlotsModel(this.savedUserModifiedProperties, colorer); return this.model; } /** {@inheritDoc} */ @Override protected final Rectangle2D.Double makeAnimationRectangle() { return new Rectangle2D.Double(0, -100, 5000, 200); } /** {@inheritDoc} */ @Override protected final JPanel makeCharts() { final int panelsPerRow = 3; TablePanel charts = new TablePanel(4, panelsPerRow); for (int plotNumber = 0; plotNumber < 10; plotNumber++) { DoubleScalar.Rel detectorLocation = new DoubleScalar.Rel(400 + 500 * plotNumber, LengthUnit.METER); FundamentalDiagram fd; try { fd = new FundamentalDiagram("Fundamental Diagram at " + detectorLocation.getSI() + "m", new DoubleScalar.Rel(1, TimeUnit.MINUTE), this.model.getLane(), detectorLocation); fd.setTitle("Density Contour Graph"); fd.setExtendedState(Frame.MAXIMIZED_BOTH); this.model.getFundamentalDiagrams().add(fd); charts.setCell(fd.getContentPane(), plotNumber / panelsPerRow, plotNumber % panelsPerRow); } catch (NetworkException exception) { exception.printStackTrace(); } } return charts; } /** {@inheritDoc} */ @Override public final String shortName() { return "Fundamental Diagrams"; } /** {@inheritDoc} */ @Override public final String description() { return "

Fundamental Diagram Plots

" + "Simulation of a single lane road of 5 km length. Vechicles are generated at a constant rate of " + "1500 veh/hour. At time 300s a blockade is inserted at position 4km; this blockade is removed at time " + "500s. This blockade simulates a bridge opening.
" + "The blockade causes a traffic jam that slowly dissolves after the blockade is removed.
" + "Output is a set of Diagrams that plot observed density, flow and speed plots against each other."; } } /** * Simulate a single lane road of 5 km length. Vehicles are generated at a constant rate of 1500 veh/hour. At time 300s * a blockade is inserted at position 4 km; this blockade is removed at time 500s. The used car following algorithm is * IDM+ Integrated Lane Change Model with * Relaxation and Synchronization, by Wouter J. Schakel, Victor L. Knoop and Bart van Arem, 2012.
* Output is a set of FundamentalDiagram plots for various point along the lane. *

* Copyright (c) 2013-2015 Delft University of Technology, PO Box 5, 2600 AA, Delft, the Netherlands. All rights * reserved.
* BSD-style license. See OpenTrafficSim License. *

* $LastChangedDate$, @version $Revision$, by $Author: pknoppers * $, initial version ug 1, 2014
* @author Peter Knoppers */ class FundamentalDiagramPlotsModel implements OTSModelInterface { /** */ private static final long serialVersionUID = 20140820L; /** the simulator. */ private OTSDEVSSimulatorInterface simulator; /** the headway (inter-vehicle time). */ private DoubleScalar.Rel headway; /** number of cars created. */ private int carsCreated = 0; /** Type of all GTUs. */ private GTUType gtuType = GTUType.makeGTUType("Car"); /** the car following model, e.g. IDM Plus for cars. */ private GTUFollowingModel carFollowingModelCars; /** the car following model, e.g. IDM Plus for trucks. */ private GTUFollowingModel carFollowingModelTrucks; /** The probability that the next generated GTU is a passenger car. */ private double carProbability; /** The lane change model. */ private AbstractLaneChangeModel laneChangeModel = new Egoistic(); /** The blocking car. */ private LaneBasedIndividualCar block = null; /** minimum distance. */ private DoubleScalar.Rel minimumDistance = new DoubleScalar.Rel(0, LengthUnit.METER); /** maximum distance. */ private DoubleScalar.Rel maximumDistance = new DoubleScalar.Rel(5000, LengthUnit.METER); /** The Lane containing the simulated Cars. */ private Lane lane; /** the speed limit. */ private DoubleScalar.Abs speedLimit = new DoubleScalar.Abs(100, SpeedUnit.KM_PER_HOUR); /** the fundamental diagram plots. */ private ArrayList fundamentalDiagrams = new ArrayList(); /** User settable properties. */ private ArrayList> properties = null; /** The random number generator used to decide what kind of GTU to generate. */ private Random randomGenerator = new Random(12345); /** The GTUColorer for the generated vehicles. */ private final GTUColorer gtuColorer; /** * @param properties ArrayList<AbstractProperty<?>>; the properties * @param gtuColorer the default and initial GTUColorer, e.g. a DefaultSwitchableTUColorer. */ public FundamentalDiagramPlotsModel(final ArrayList> properties, final GTUColorer gtuColorer) { this.properties = properties; this.gtuColorer = gtuColorer; } /** {@inheritDoc} */ @Override public final void constructModel( final SimulatorInterface, DoubleScalar.Rel, OTSSimTimeDouble> theSimulator) throws SimRuntimeException, RemoteException { this.simulator = (OTSDEVSSimulatorInterface) theSimulator; OTSNode from = new OTSNode("From", new OTSPoint3D(getMinimumDistance().getSI(), 0, 0)); OTSNode to = new OTSNode("To", new OTSPoint3D(getMaximumDistance().getSI(), 0, 0)); LaneType laneType = new LaneType("CarLane"); laneType.addCompatibility(this.gtuType); try { this.lane = LaneFactory.makeLane("Lane", from, to, null, laneType, this.speedLimit, this.simulator); } catch (NamingException | NetworkException | OTSGeometryException exception) { exception.printStackTrace(); } for (AbstractProperty p : this.properties) { if (p instanceof SelectionProperty) { SelectionProperty sp = (SelectionProperty) p; if ("Car following model".equals(sp.getShortName())) { String modelName = sp.getValue(); if (modelName.equals("IDM")) { this.carFollowingModelCars = new IDM( new DoubleScalar.Abs(1, AccelerationUnit.METER_PER_SECOND_2), new DoubleScalar.Abs(1.5, AccelerationUnit.METER_PER_SECOND_2), new DoubleScalar.Rel(2, LengthUnit.METER), new DoubleScalar.Rel(1, TimeUnit.SECOND), 1d); this.carFollowingModelTrucks = new IDM( new DoubleScalar.Abs(0.5, AccelerationUnit.METER_PER_SECOND_2), new DoubleScalar.Abs(1.5, AccelerationUnit.METER_PER_SECOND_2), new DoubleScalar.Rel(2, LengthUnit.METER), new DoubleScalar.Rel(1, TimeUnit.SECOND), 1d); } else if (modelName.equals("IDM+")) { this.carFollowingModelCars = new IDMPlus(new DoubleScalar.Abs(1, AccelerationUnit.METER_PER_SECOND_2), new DoubleScalar.Abs( 1.5, AccelerationUnit.METER_PER_SECOND_2), new DoubleScalar.Rel(2, LengthUnit.METER), new DoubleScalar.Rel(1, TimeUnit.SECOND), 1d); this.carFollowingModelTrucks = new IDMPlus(new DoubleScalar.Abs(0.5, AccelerationUnit.METER_PER_SECOND_2), new DoubleScalar.Abs( 1.5, AccelerationUnit.METER_PER_SECOND_2), new DoubleScalar.Rel(2, LengthUnit.METER), new DoubleScalar.Rel(1, TimeUnit.SECOND), 1d); } else { throw new Error("Car following model " + modelName + " not implemented"); } } else { throw new Error("Unhandled SelectionProperty " + p.getShortName()); } } else if (p instanceof ProbabilityDistributionProperty) { ProbabilityDistributionProperty pdp = (ProbabilityDistributionProperty) p; String modelName = p.getShortName(); if (modelName.equals("Traffic composition")) { this.carProbability = pdp.getValue()[0]; } else { throw new Error("Unhandled ProbabilityDistributionProperty " + p.getShortName()); } } else { throw new Error("Unhandled property: " + p); } } // 1500 [veh / hour] == 2.4s headway this.headway = new DoubleScalar.Rel(3600.0 / 1500.0, TimeUnit.SECOND); try { // Schedule creation of the first car (this will re-schedule itself one headway later, etc.). this.simulator.scheduleEventAbs(new DoubleScalar.Abs(0.0, TimeUnit.SECOND), this, this, "generateCar", null); // Create a block at t = 5 minutes this.simulator.scheduleEventAbs(new DoubleScalar.Abs(300, TimeUnit.SECOND), this, this, "createBlock", null); // Remove the block at t = 7 minutes this.simulator.scheduleEventAbs(new DoubleScalar.Abs(420, TimeUnit.SECOND), this, this, "removeBlock", null); // Schedule regular updates of the graph for (int t = 1; t <= 1800; t++) { this.simulator.scheduleEventAbs(new DoubleScalar.Abs(t - 0.001, TimeUnit.SECOND), this, this, "drawGraphs", null); } } catch (RemoteException | SimRuntimeException exception) { exception.printStackTrace(); } } /** * Set up the block. * @throws RemoteException on communications failure */ protected final void createBlock() throws RemoteException { DoubleScalar.Rel initialPosition = new DoubleScalar.Rel(4000, LengthUnit.METER); Map, DoubleScalar.Rel> initialPositions = new LinkedHashMap, DoubleScalar.Rel>(); initialPositions.put(this.getLane(), initialPosition); try { this.block = new LaneBasedIndividualCar<>(999999, this.gtuType, this.carFollowingModelCars, this.laneChangeModel, initialPositions, new DoubleScalar.Abs(0, SpeedUnit.KM_PER_HOUR), new DoubleScalar.Rel(4, LengthUnit.METER), new DoubleScalar.Rel(1.8, LengthUnit.METER), new DoubleScalar.Abs(0, SpeedUnit.KM_PER_HOUR), new CompleteLaneBasedRouteNavigator( new CompleteRoute("")), this.simulator, DefaultCarAnimation.class, this.gtuColorer); } catch (RemoteException | SimRuntimeException | NamingException | NetworkException | GTUException exception) { exception.printStackTrace(); } } /** * Remove the block. */ protected final void removeBlock() { this.block.destroy(); this.block = null; } /** * Generate cars at a fixed rate (implemented by re-scheduling this method). */ protected final void generateCar() { boolean generateTruck = this.randomGenerator.nextDouble() > this.carProbability; DoubleScalar.Rel initialPosition = new DoubleScalar.Rel(0, LengthUnit.METER); DoubleScalar.Abs initialSpeed = new DoubleScalar.Abs(100, SpeedUnit.KM_PER_HOUR); Map, DoubleScalar.Rel> initialPositions = new LinkedHashMap, DoubleScalar.Rel>(); initialPositions.put(this.getLane(), initialPosition); try { DoubleScalar.Rel vehicleLength = new DoubleScalar.Rel(generateTruck ? 15 : 4, LengthUnit.METER); GTUFollowingModel gtuFollowingModel = generateTruck ? this.carFollowingModelTrucks : this.carFollowingModelCars; if (null == gtuFollowingModel) { throw new Error("gtuFollowingModel is null"); } new LaneBasedIndividualCar<>(++this.carsCreated, this.gtuType, generateTruck ? this.carFollowingModelTrucks : this.carFollowingModelCars, this.laneChangeModel, initialPositions, initialSpeed, vehicleLength, new DoubleScalar.Rel(1.8, LengthUnit.METER), new DoubleScalar.Abs(200, SpeedUnit.KM_PER_HOUR), new CompleteLaneBasedRouteNavigator( new CompleteRoute("")), this.simulator, DefaultCarAnimation.class, this.gtuColorer); this.simulator.scheduleEventRel(this.headway, this, this, "generateCar", null); } catch (RemoteException | SimRuntimeException | NamingException | NetworkException | GTUException exception) { exception.printStackTrace(); } } /** * */ protected final void drawGraphs() { // Notify the Fundamental Diagram plots that the underlying data has changed for (FundamentalDiagram fd : this.fundamentalDiagrams) { fd.reGraph(); } } /** {@inheritDoc} */ @Override public final SimulatorInterface, DoubleScalar.Rel, OTSSimTimeDouble> getSimulator() throws RemoteException { return null; } /** * @return fundamentalDiagramPlots */ public final ArrayList getFundamentalDiagrams() { return this.fundamentalDiagrams; } /** * @return minimumDistance */ public final DoubleScalar.Rel getMinimumDistance() { return this.minimumDistance; } /** * @return maximumDistance */ public final DoubleScalar.Rel getMaximumDistance() { return this.maximumDistance; } /** * @return lane. */ public Lane getLane() { return this.lane; } }