package org.opentrafficsim.demo.carFollowing; import java.awt.Container; import java.awt.Frame; import java.awt.geom.Rectangle2D; import java.io.IOException; import java.net.URL; import java.rmi.RemoteException; import java.util.ArrayList; import java.util.Iterator; import java.util.LinkedHashMap; import java.util.List; import java.util.Map; import java.util.Random; import javax.naming.NamingException; import javax.swing.JComponent; import javax.swing.JPanel; import javax.swing.JScrollPane; import javax.swing.SwingUtilities; import nl.tudelft.simulation.dsol.SimRuntimeException; import nl.tudelft.simulation.dsol.gui.swing.HTMLPanel; import nl.tudelft.simulation.dsol.gui.swing.TablePanel; import nl.tudelft.simulation.dsol.simulators.SimulatorInterface; import org.opentrafficsim.core.car.LaneBasedIndividualCar; import org.opentrafficsim.core.dsol.OTSDEVSSimulatorInterface; import org.opentrafficsim.core.dsol.OTSModelInterface; import org.opentrafficsim.core.dsol.OTSSimTimeDouble; import org.opentrafficsim.core.geometry.OTSGeometryException; import org.opentrafficsim.core.geometry.OTSPoint3D; import org.opentrafficsim.core.gtu.GTUException; import org.opentrafficsim.core.gtu.GTUType; import org.opentrafficsim.core.gtu.animation.DefaultCarAnimation; import org.opentrafficsim.core.gtu.animation.GTUColorer; import org.opentrafficsim.core.gtu.following.GTUFollowingModel; import org.opentrafficsim.core.gtu.following.IDM; import org.opentrafficsim.core.gtu.following.IDMPlus; import org.opentrafficsim.core.gtu.lane.changing.AbstractLaneChangeModel; import org.opentrafficsim.core.gtu.lane.changing.Egoistic; import org.opentrafficsim.core.network.NetworkException; import org.opentrafficsim.core.network.OTSNode; import org.opentrafficsim.core.network.factory.LaneFactory; import org.opentrafficsim.core.network.lane.CrossSectionLink; import org.opentrafficsim.core.network.lane.Lane; import org.opentrafficsim.core.network.lane.LaneType; import org.opentrafficsim.core.network.lane.Sensor; import org.opentrafficsim.core.network.lane.SinkSensor; import org.opentrafficsim.core.network.route.CompleteRoute; import org.opentrafficsim.core.network.route.CompleteLaneBasedRouteNavigator; import org.opentrafficsim.core.unit.AccelerationUnit; import org.opentrafficsim.core.unit.LengthUnit; import org.opentrafficsim.core.unit.SpeedUnit; import org.opentrafficsim.core.unit.TimeUnit; import org.opentrafficsim.core.value.vdouble.scalar.DoubleScalar; import org.opentrafficsim.core.value.vdouble.scalar.DoubleScalar.Abs; import org.opentrafficsim.core.value.vdouble.scalar.DoubleScalar.Rel; import org.opentrafficsim.graphs.AccelerationContourPlot; import org.opentrafficsim.graphs.ContourPlot; import org.opentrafficsim.graphs.DensityContourPlot; import org.opentrafficsim.graphs.FlowContourPlot; import org.opentrafficsim.graphs.LaneBasedGTUSampler; import org.opentrafficsim.graphs.SpeedContourPlot; import org.opentrafficsim.graphs.TrajectoryPlot; import org.opentrafficsim.simulationengine.AbstractWrappableSimulation; import org.opentrafficsim.simulationengine.WrappableSimulation; import org.opentrafficsim.simulationengine.properties.AbstractProperty; import org.opentrafficsim.simulationengine.properties.BooleanProperty; import org.opentrafficsim.simulationengine.properties.CompoundProperty; import org.opentrafficsim.simulationengine.properties.IDMPropertySet; import org.opentrafficsim.simulationengine.properties.ProbabilityDistributionProperty; import org.opentrafficsim.simulationengine.properties.PropertyException; import org.opentrafficsim.simulationengine.properties.SelectionProperty; /** * Single lane road consisting of three consecutive links.
* Tests that GTUs correctly transfer themselves onto the next lane and that the graph samplers handle this situation. *

* Copyright (c) 2013-2015 Delft University of Technology, PO Box 5, 2600 AA, Delft, the Netherlands. All rights reserved.
* BSD-style license. See OpenTrafficSim License. *

* $LastChangedDate$, @version $Revision$, by $Author$, * initial version 30 jan. 2015
* @author Alexander Verbraeck * @author Peter Knoppers */ public class SequentialLanes extends AbstractWrappableSimulation implements WrappableSimulation { /** the model. */ private SequentialModel model; /** Create a SequentialLanes simulation. */ public SequentialLanes() { ArrayList> outputProperties = new ArrayList>(); outputProperties.add(new BooleanProperty("Density", "Density contour plot", true, false, 0)); outputProperties.add(new BooleanProperty("Flow", "Flow contour plot", true, false, 1)); outputProperties.add(new BooleanProperty("Speed", "Speed contour plot", true, false, 2)); outputProperties.add(new BooleanProperty("Acceleration", "Acceleration contour plot", true, false, 3)); outputProperties.add(new BooleanProperty("Trajectories", "Trajectory (time/distance) diagram", true, false, 4)); this.properties.add(new CompoundProperty("Output graphs", "Select the graphical output", outputProperties, true, 1000)); } /** {@inheritDoc} */ @Override public final void stopTimersThreads() { super.stopTimersThreads(); this.model = null; } /** * Main program. * @param args String[]; the command line arguments (not used) * @throws RemoteException on communications failure * @throws SimRuntimeException when simulation cannot be created with given parameters */ public static void main(final String[] args) throws RemoteException, SimRuntimeException { SwingUtilities.invokeLater(new Runnable() { @Override public void run() { try { SequentialLanes sequential = new SequentialLanes(); ArrayList> localProperties = sequential.getProperties(); try { localProperties.add(new ProbabilityDistributionProperty("Traffic composition", "Mix of passenger cars and trucks", new String[]{"passenger car", "truck"}, new Double[]{0.8, 0.2}, false, 10)); } catch (PropertyException exception) { exception.printStackTrace(); } localProperties.add(new SelectionProperty("Car following model", "The car following model determines " + "the acceleration that a vehicle will make taking into account " + "nearby vehicles, infrastructural restrictions (e.g. speed limit, " + "curvature of the road) capabilities of the vehicle and personality " + "of the driver.", new String[]{"IDM", "IDM+"}, 1, false, 1)); localProperties.add(IDMPropertySet.makeIDMPropertySet("Car", new DoubleScalar.Abs(1.0, AccelerationUnit.METER_PER_SECOND_2), new DoubleScalar.Abs(1.5, AccelerationUnit.METER_PER_SECOND_2), new DoubleScalar.Rel(2.0, LengthUnit.METER), new DoubleScalar.Rel(1.0, TimeUnit.SECOND), 2)); localProperties.add(IDMPropertySet.makeIDMPropertySet("Truck", new DoubleScalar.Abs( 0.5, AccelerationUnit.METER_PER_SECOND_2), new DoubleScalar.Abs(1.25, AccelerationUnit.METER_PER_SECOND_2), new DoubleScalar.Rel(2.0, LengthUnit.METER), new DoubleScalar.Rel(1.0, TimeUnit.SECOND), 3)); sequential.buildSimulator(localProperties, null, true); sequential.panel.getTabbedPane().addTab("info", sequential.makeInfoPane()); } catch (RemoteException | SimRuntimeException | NamingException exception) { exception.printStackTrace(); } } }); } /** {@inheritDoc} */ @Override protected final Rectangle2D.Double makeAnimationRectangle() { return new Rectangle2D.Double(0, -100, 2010, 200); } /** {@inheritDoc} */ @Override protected final OTSModelInterface makeModel(final GTUColorer colorer) { this.model = new SequentialModel(this.savedUserModifiedProperties, colorer); return this.model; } /** * @return an info pane to be added to the tabbed pane. */ protected final JComponent makeInfoPane() { // Make the info tab String helpSource = "/" + StraightModel.class.getPackage().getName().replace('.', '/') + "/IDMPlus.html"; URL page = StraightModel.class.getResource(helpSource); if (page != null) { try { HTMLPanel htmlPanel = new HTMLPanel(page); return new JScrollPane(htmlPanel); } catch (IOException exception) { exception.printStackTrace(); } } return new JPanel(); } /** {@inheritDoc} */ @Override protected final JPanel makeCharts() { // Make the tab with the plots AbstractProperty output = new CompoundProperty("", "", this.properties, false, 0).findByShortName("Output graphs"); if (null == output) { throw new Error("Cannot find output properties"); } ArrayList graphs = new ArrayList(); if (output instanceof CompoundProperty) { CompoundProperty outputProperties = (CompoundProperty) output; for (AbstractProperty ap : outputProperties.getValue()) { if (ap instanceof BooleanProperty) { BooleanProperty bp = (BooleanProperty) ap; if (bp.getValue()) { graphs.add(bp); } } } } else { throw new Error("output properties should be compound"); } int graphCount = graphs.size(); int columns = (int) Math.ceil(Math.sqrt(graphCount)); int rows = 0 == columns ? 0 : (int) Math.ceil(graphCount * 1.0 / columns); TablePanel charts = new TablePanel(columns, rows); for (int i = 0; i < graphCount; i++) { String graphName = graphs.get(i).getShortName(); Container container = null; LaneBasedGTUSampler graph; if (graphName.contains("Trajectories")) { TrajectoryPlot tp = new TrajectoryPlot("TrajectoryPlot", new DoubleScalar.Rel(0.5, TimeUnit.SECOND), this.model .getPath()); tp.setTitle("Trajectory Graph"); tp.setExtendedState(Frame.MAXIMIZED_BOTH); graph = tp; container = tp.getContentPane(); } else { ContourPlot cp; if (graphName.contains("Density")) { cp = new DensityContourPlot("DensityPlot", this.model.getPath()); cp.setTitle("Density Contour Graph"); } else if (graphName.contains("Speed")) { cp = new SpeedContourPlot("SpeedPlot", this.model.getPath()); cp.setTitle("Speed Contour Graph"); } else if (graphName.contains("Flow")) { cp = new FlowContourPlot("FlowPlot", this.model.getPath()); cp.setTitle("Flow Contour Graph"); } else if (graphName.contains("Acceleration")) { cp = new AccelerationContourPlot("AccelerationPlot", this.model.getPath()); cp.setTitle("Acceleration Contour Graph"); } else { continue; // throw new Error("Unhandled type of contourplot: " + graphName); } graph = cp; container = cp.getContentPane(); } // Add the container to the matrix charts.setCell(container, i % columns, i / columns); this.model.getPlots().add(graph); } return charts; } /** {@inheritDoc} */ @Override public final String shortName() { return "Sequential Lanes"; } /** {@inheritDoc} */ @Override public final String description() { return "

Simulation of a straight one-lane road consisting of three consecutive Links

" + "Simulation of a single lane road consisting of two 1 km stretches with a 1m stretch in between. " + "This will test transition of a GTU from one lane section onto the next.
" + "Vehicles are generated at a constant rate of 1500 veh/hour.
" + "Selected trajectory and contour plots are generated during the simulation."; } } /** * Build the sequential model. *

* Copyright (c) 2013-2015 Delft University of Technology, PO Box 5, 2600 AA, Delft, the Netherlands. All rights reserved.
* BSD-style license. See OpenTrafficSim License. *

* $LastChangedDate$, @version $Revision$, by $Author$, * initial version 0 jan. 2015
* @author Peter Knoppers */ class SequentialModel implements OTSModelInterface { /** */ private static final long serialVersionUID = 20150130L; /** the simulator. */ private OTSDEVSSimulatorInterface simulator; /** The nodes of our network in the order that all GTUs will visit them. */ private ArrayList> nodes = new ArrayList>(); /** the car following model, e.g. IDM Plus for cars. */ private GTUFollowingModel carFollowingModelCars; /** the car following model, e.g. IDM Plus for trucks. */ private GTUFollowingModel carFollowingModelTrucks; /** The probability that the next generated GTU is a passenger car. */ private double carProbability; /** The lane change model. */ private AbstractLaneChangeModel laneChangeModel = new Egoistic(); /** the headway (inter-vehicle time). */ private DoubleScalar.Rel headway; /** number of cars created. */ private int carsCreated = 0; /** Type of all GTUs. */ private GTUType gtuType = GTUType.makeGTUType("Car"); /** minimum distance. */ private DoubleScalar.Rel minimumDistance = new DoubleScalar.Rel(0, LengthUnit.METER); /** The Lane where newly created Cars initially placed on. */ private Lane initialLane; /** maximum distance. */ private DoubleScalar.Rel maximumDistance = new DoubleScalar.Rel(2001, LengthUnit.METER); /** the contour plots. */ private ArrayList plots = new ArrayList(); /** The random number generator used to decide what kind of GTU to generate. */ private Random randomGenerator = new Random(12345); /** User settable properties. */ private ArrayList> properties = null; /** The sequence of Lanes that all vehicles will follow. */ private List> path = new ArrayList>(); /** The speedLimit on all Lanes. */ private DoubleScalar.Abs speedLimit; /** The GTUColorer for the generated vehicles. */ private final GTUColorer gtuColorer; /** * @param properties the user settable properties * @param gtuColorer the default and initial GTUColorer, e.g. a DefaultSwitchableTUColorer. */ public SequentialModel(final ArrayList> properties, final GTUColorer gtuColorer) { this.properties = properties; this.gtuColorer = gtuColorer; } /** * @return a newly created path (which all GTUs in this simulation will follow). */ public List> getPath() { return new ArrayList>(this.path); } /** {@inheritDoc} */ @Override public final void constructModel(final SimulatorInterface, Rel, OTSSimTimeDouble> theSimulator) throws SimRuntimeException, RemoteException { this.simulator = (OTSDEVSSimulatorInterface) theSimulator; this.speedLimit = new DoubleScalar.Abs(100, SpeedUnit.KM_PER_HOUR); this.nodes = new ArrayList>(); // TODO use: int[] linkBoundaries = {0, 1000, 1001, 2001, 2200}; int[] linkBoundaries = {0, 1000, 2001, 2200}; for (int xPos : linkBoundaries) { this.nodes.add(new OTSNode("Node at " + xPos, new OTSPoint3D(xPos, xPos > 1001 ? 200 : -10, 0))); } LaneType laneType = new LaneType("CarLane"); laneType.addCompatibility(this.gtuType); // Now we can build a series of Links with one Lane on them ArrayList> links = new ArrayList>(); for (int i = 1; i < this.nodes.size(); i++) { OTSNode fromNode = this.nodes.get(i - 1); OTSNode toNode = this.nodes.get(i); String linkName = fromNode.getId() + "-" + toNode.getId(); try { Lane[] lanes = LaneFactory .makeMultiLane(linkName, fromNode, toNode, null, 1, laneType, this.speedLimit, this.simulator); if (i == this.nodes.size() - 1) { Sensor sensor = new SinkSensor(lanes[0], new DoubleScalar.Rel(10.0, LengthUnit.METER), this.simulator); lanes[0].addSensor(sensor); } this.path.add(lanes[0]); links.add(lanes[0].getParentLink()); if (1 == i) { this.initialLane = lanes[0]; } } catch (NamingException | NetworkException | OTSGeometryException exception) { exception.printStackTrace(); } } // 1500 [veh / hour] == 2.4s headway this.headway = new DoubleScalar.Rel(3600.0 / 1500.0, TimeUnit.SECOND); // Schedule creation of the first car (it will re-schedule itself one headway later, etc.). this.simulator.scheduleEventAbs(new DoubleScalar.Abs(0.0, TimeUnit.SECOND), this, this, "generateCar", null); // Schedule regular updates of the graphs for (int t = 1; t <= 1800; t++) { this.simulator.scheduleEventAbs(new DoubleScalar.Abs(t - 0.001, TimeUnit.SECOND), this, this, "drawGraphs", null); } try { String carFollowingModelName = null; CompoundProperty propertyContainer = new CompoundProperty("", "", this.properties, false, 0); AbstractProperty cfmp = propertyContainer.findByShortName("Car following model"); if (null == cfmp) { throw new Error("Cannot find \"Car following model\" property"); } if (cfmp instanceof SelectionProperty) { carFollowingModelName = ((SelectionProperty) cfmp).getValue(); } else { throw new Error("\"Car following model\" property has wrong type"); } Iterator>>> iterator = new CompoundProperty("", "", this.properties, false, 0).iterator(); while (iterator.hasNext()) { AbstractProperty ap = iterator.next(); if (ap instanceof SelectionProperty) { SelectionProperty sp = (SelectionProperty) ap; if ("Car following model".equals(sp.getShortName())) { carFollowingModelName = sp.getValue(); } } else if (ap instanceof ProbabilityDistributionProperty) { ProbabilityDistributionProperty pdp = (ProbabilityDistributionProperty) ap; if (ap.getShortName().equals("Traffic composition")) { this.carProbability = pdp.getValue()[0]; } } else if (ap instanceof CompoundProperty) { CompoundProperty cp = (CompoundProperty) ap; if (ap.getShortName().equals("Output graphs")) { continue; // Output settings are handled elsewhere } if (ap.getShortName().contains("IDM")) { // System.out.println("Car following model name appears to be " + ap.getShortName()); DoubleScalar.Abs a = IDMPropertySet.getA(cp); DoubleScalar.Abs b = IDMPropertySet.getB(cp); DoubleScalar.Rel s0 = IDMPropertySet.getS0(cp); DoubleScalar.Rel tSafe = IDMPropertySet.getTSafe(cp); GTUFollowingModel gtuFollowingModel = null; if (carFollowingModelName.equals("IDM")) { gtuFollowingModel = new IDM(a, b, s0, tSafe, 1.0); } else if (carFollowingModelName.equals("IDM+")) { gtuFollowingModel = new IDMPlus(a, b, s0, tSafe, 1.0); } else { throw new Error("Unknown gtu following model: " + carFollowingModelName); } if (ap.getShortName().contains(" Car ")) { this.carFollowingModelCars = gtuFollowingModel; } else if (ap.getShortName().contains(" Truck ")) { this.carFollowingModelTrucks = gtuFollowingModel; } else { throw new Error("Cannot determine gtu type for " + ap.getShortName()); } } } } } catch (Exception e) { System.out.println("Caught exception " + e); } } /** {@inheritDoc} */ @Override public SimulatorInterface, Rel, OTSSimTimeDouble> getSimulator() throws RemoteException { return this.simulator; } /** * @return contourPlots */ public final ArrayList getPlots() { return this.plots; } /** * @return minimumDistance */ public final DoubleScalar.Rel getMinimumDistance() { return this.minimumDistance; } /** * @return maximumDistance */ public final DoubleScalar.Rel getMaximumDistance() { return this.maximumDistance; } /** * Notify the contour plots that the underlying data has changed. */ protected final void drawGraphs() { for (LaneBasedGTUSampler plot : this.plots) { plot.reGraph(); } } /** * Generate cars at a fixed rate (implemented by re-scheduling this method). */ protected final void generateCar() { boolean generateTruck = this.randomGenerator.nextDouble() > this.carProbability; DoubleScalar.Rel initialPosition = new DoubleScalar.Rel(0, LengthUnit.METER); DoubleScalar.Abs initialSpeed = new DoubleScalar.Abs(100, SpeedUnit.KM_PER_HOUR); Map, DoubleScalar.Rel> initialPositions = new LinkedHashMap, DoubleScalar.Rel>(); initialPositions.put(this.initialLane, initialPosition); try { DoubleScalar.Rel vehicleLength = new DoubleScalar.Rel(generateTruck ? 15 : 4, LengthUnit.METER); GTUFollowingModel gtuFollowingModel = generateTruck ? this.carFollowingModelTrucks : this.carFollowingModelCars; if (null == gtuFollowingModel) { throw new Error("gtuFollowingModel is null"); } new LaneBasedIndividualCar<>(++this.carsCreated, this.gtuType, generateTruck ? this.carFollowingModelTrucks : this.carFollowingModelCars, this.laneChangeModel, initialPositions, initialSpeed, vehicleLength, new DoubleScalar.Rel(1.8, LengthUnit.METER), new DoubleScalar.Abs(200, SpeedUnit.KM_PER_HOUR), new CompleteLaneBasedRouteNavigator(new CompleteRoute("")), this.simulator, DefaultCarAnimation.class, this.gtuColorer); this.simulator.scheduleEventRel(this.headway, this, this, "generateCar", null); } catch (RemoteException | SimRuntimeException | NamingException | NetworkException | GTUException exception) { exception.printStackTrace(); } } }