package org.opentrafficsim.road.gtu.following; import org.djunits.unit.AccelerationUnit; import org.djunits.unit.LengthUnit; import org.djunits.unit.SpeedUnit; import org.djunits.unit.TimeUnit; import org.djunits.value.vdouble.scalar.Acceleration; import org.djunits.value.vdouble.scalar.Length; import org.djunits.value.vdouble.scalar.Speed; import org.djunits.value.vdouble.scalar.Time; /** * The Intelligent Driver Model by Treiber, Hennecke and Helbing. *

* Copyright (c) 2013-2015 Delft University of Technology, PO Box 5, 2600 AA, Delft, the Netherlands. All rights reserved.
* BSD-style license. See OpenTrafficSim License. *

* @version $Revision: 1408 $, $LastChangedDate: 2015-09-24 15:17:25 +0200 (Thu, 24 Sep 2015) $, by $Author: pknoppers $, * initial version 19 nov. 2014
* @author Peter Knoppers */ public class IDM extends AbstractGTUFollowingModel { /** Preferred net longitudinal distance when stopped [m]. */ private final Length.Rel s0; /** Maximum longitudinal acceleration [m/s^2]. */ private final Acceleration a; /** Longitudinal deceleration [m/s^2]. (Should be a positive value even though it is a deceleration.) */ private final Acceleration b; /** Safe time headway. */ private final Time.Rel tSafe; /** * Time slot size used by IDM (not defined in the paper, but 0.5s is a reasonable trade-off between computational speed and * accuracy). */ private final Time.Rel stepSize = new Time.Rel(0.5, TimeUnit.SECOND); /** * Mean speed limit adherence (1.0: mean free speed equals the speed limit; 1.1: mean speed limit equals 110% of the speed * limit, etc.). */ private final double delta; /** * Construct a new IDM car following model with reasonable values (reasonable for passenger cars). */ public IDM() { this.a = new Acceleration(1.56, AccelerationUnit.METER_PER_SECOND_2); this.b = new Acceleration(2.09, AccelerationUnit.METER_PER_SECOND_2); this.s0 = new Length.Rel(3, LengthUnit.METER); this.tSafe = new Time.Rel(1.2, TimeUnit.SECOND); this.delta = 1d; } /** * Construct a new IDM car following model. * @param a DoubleScalar.Abs<AccelerationUnit>; the maximum acceleration of a stationary vehicle (normal value is 1 * m/s/s) * @param b DoubleScalar.Abs<AccelerationUnit>; the maximum deemed-safe deceleration (this is a positive value). * Normal value is 1.5 m/s/s. * @param s0 DoubleScalar.Rel<LengthUnit>; the minimum stationary headway (normal value is 2 m) * @param tSafe DoubleScalar.Rel<TimeUnit>; the minimum time-headway (normal value is 1s) * @param delta double; the speed limit adherence (1.0; mean free speed equals the speed limit; 1.1: mean free speed equals * 110% of the speed limit; etc.) */ public IDM(final Acceleration a, final Acceleration b, final Length.Rel s0, final Time.Rel tSafe, final double delta) { this.a = a; this.b = b; this.s0 = s0; this.tSafe = tSafe; this.delta = delta; } /** * Desired speed (taking into account the urge to drive a little faster or slower than the posted speed limit). * @param speedLimit DoubleScalarAbs<SpeedUnit>; the speed limit * @param followerMaximumSpeed DoubleScalar.Abs<SpeedUnit>; the maximum speed that the follower can drive * @return DoubleScalarRel<SpeedUnit>; the desired speed */ private Speed vDes(final Speed speedLimit, final Speed followerMaximumSpeed) { return new Speed(Math.min(this.delta * speedLimit.getSI(), followerMaximumSpeed.getSI()), SpeedUnit.SI); } /** {@inheritDoc} */ public final Acceleration computeAcceleration(final Speed followerSpeed, final Speed followerMaximumSpeed, final Speed leaderSpeed, final Length.Rel headway, final Speed speedLimit) { // System.out.println("Applying IDM for " + follower + " headway is " + headway); // dV is the approach speed Speed dV = followerSpeed.minus(leaderSpeed); Acceleration aFree = new Acceleration(this.a.getSI() * (1 - Math.pow(followerSpeed.getSI() / vDes(speedLimit, followerMaximumSpeed).getSI(), 4)), AccelerationUnit.SI); if (Double.isNaN(aFree.getSI())) { aFree = new Acceleration(0, AccelerationUnit.SI); } Acceleration logWeightedAccelerationTimes2 = new Acceleration(Math.sqrt(this.a.getSI() * this.b.getSI()), AccelerationUnit.SI).multiplyBy(2); // don't forget the times 2 // TODO compute logWeightedAccelerationTimes2 only once per run Length.Rel right = followerSpeed.multiplyBy(this.tSafe).plus( dV.multiplyBy(followerSpeed.divideBy(logWeightedAccelerationTimes2))); /*- Calc.speedTimesTime(followerSpeed, this.tSafe).plus( Calc.speedTimesTime(dV, Calc.speedDividedByAcceleration(followerSpeed, logWeightedAccelerationTimes2))); */ if (right.getSI() < 0) { // System.out.println("Fixing negative right"); right = new Length.Rel(0, LengthUnit.SI); } Length.Rel sStar = this.s0.plus(right); if (sStar.getSI() < 0) // Negative value should be treated as 0 { System.out.println("sStar is negative"); sStar = new Length.Rel(0, LengthUnit.SI); } // System.out.println("s* is " + sStar); Acceleration aInteraction = new Acceleration(-Math.pow(this.a.getSI() * sStar.getSI() / headway.getSI(), 2), AccelerationUnit.SI); Acceleration newAcceleration = aFree.plus(aInteraction); if (newAcceleration.getSI() * this.stepSize.getSI() + followerSpeed.getSI() < 0) { // System.out.println("Limiting deceleration to prevent moving backwards"); newAcceleration = new Acceleration(-followerSpeed.getSI() / this.stepSize.getSI(), AccelerationUnit.SI); } // System.out.println("newAcceleration is " + newAcceleration); return newAcceleration; } /** {@inheritDoc} */ @Override public final Time.Rel getStepSize() { return new Time.Rel(this.stepSize); } /** {@inheritDoc} */ @Override public final Acceleration maximumSafeDeceleration() { return this.b; } /** {@inheritDoc} */ @Override public final String getName() { return "IDM"; } /** {@inheritDoc} */ @Override public final String getLongName() { return String.format("%s (a=%.1fm/s\u00b2, b=%.1fm/s\u00b2, s0=%.1fm, tSafe=%.1fs, delta=%.2f)", getName(), this.a.getSI(), this.b.getSI(), this.s0.getSI(), this.tSafe.getSI(), this.delta); } }