package org.opentrafficsim.draw.graphs;
import java.awt.Color;
import java.time.Period;
import java.util.ArrayList;
import java.util.EnumSet;
import java.util.Iterator;
import java.util.LinkedHashMap;
import java.util.LinkedHashSet;
import java.util.List;
import java.util.Map;
import java.util.Map.Entry;
import java.util.Set;
import java.util.SortedSet;
import java.util.TreeSet;
import org.djunits.value.vdouble.scalar.Duration;
import org.djunits.value.vdouble.scalar.Length;
import org.djunits.value.vdouble.scalar.Time;
import org.djutils.exceptions.Throw;
import org.djutils.immutablecollections.ImmutableLinkedHashSet;
import org.djutils.immutablecollections.ImmutableSet;
import org.jfree.chart.JFreeChart;
import org.jfree.chart.LegendItem;
import org.jfree.chart.LegendItemCollection;
import org.jfree.chart.axis.NumberAxis;
import org.jfree.chart.plot.XYPlot;
import org.jfree.chart.renderer.xy.XYLineAndShapeRenderer;
import org.jfree.data.DomainOrder;
import org.jfree.data.xy.XYDataset;
import org.opentrafficsim.core.dsol.OTSSimulatorInterface;
import org.opentrafficsim.kpi.sampling.KpiLaneDirection;
import org.opentrafficsim.kpi.sampling.Sampler;
import org.opentrafficsim.kpi.sampling.SamplingException;
import org.opentrafficsim.kpi.sampling.SpaceTimeRegion;
import org.opentrafficsim.kpi.sampling.Trajectory;
import org.opentrafficsim.kpi.sampling.Trajectory.SpaceTimeView;
import org.opentrafficsim.kpi.sampling.TrajectoryGroup;
/**
* Fundamental diagram from various sources.
*
* Copyright (c) 2013-2020 Delft University of Technology, PO Box 5, 2600 AA, Delft, the Netherlands. All rights reserved.
* BSD-style license. See OpenTrafficSim License .
*
* @version $Revision$, $LastChangedDate$, by $Author$, initial version 14 okt. 2018
* @author Alexander Verbraeck
* @author Peter Knoppers
* @author Wouter Schakel
*/
public class FundamentalDiagram extends AbstractBoundedPlot implements XYDataset
{
/** Aggregation periods. */
public static final double[] DEFAULT_PERIODS = new double[] {5.0, 10.0, 30.0, 60.0, 120.0, 300.0, 900.0};
/** Update frequencies (n * 1/period). */
public static final int[] DEFAULT_UPDATE_FREQUENCIES = new int[] {1, 2, 3, 5, 10};
/** Source providing the data. */
private final FdSource source;
/** Fundamental diagram line. */
private final FdLine fdLine;
/** Quantity on domain axis. */
private Quantity domainQuantity;
/** Quantity on range axis. */
private Quantity rangeQuantity;
/** The other, 3rd quantity. */
private Quantity otherQuantity;
/** Labels of series. */
private final List seriesLabels = new ArrayList<>();
/** Updater for update times. */
private final GraphUpdater graphUpdater;
/** Property for chart listener to provide time info for status label. */
private String timeInfo = "";
/** Legend to change text color to indicate visibility. */
private LegendItemCollection legend;
/** Whether each lane is visible or not. */
private final List laneVisible = new ArrayList<>();
/**
* Constructor.
* @param caption String; caption
* @param domainQuantity Quantity; initial quantity on the domain axis
* @param rangeQuantity Quantity; initial quantity on the range axis
* @param simulator OTSSimulatorInterface; simulator
* @param source FdSource; source providing the data
* @param fdLine fundamental diagram line, may be {@code null}
*/
public FundamentalDiagram(final String caption, final Quantity domainQuantity, final Quantity rangeQuantity,
final OTSSimulatorInterface simulator, final FdSource source, final FdLine fdLine)
{
super(simulator, caption, source.getUpdateInterval(), source.getDelay());
Throw.when(domainQuantity.equals(rangeQuantity), IllegalArgumentException.class,
"Domain and range quantity should not be equal.");
this.fdLine = fdLine;
this.setDomainQuantity(domainQuantity);
this.setRangeQuantity(rangeQuantity);
Set quantities = EnumSet.allOf(Quantity.class);
quantities.remove(domainQuantity);
quantities.remove(rangeQuantity);
this.setOtherQuantity(quantities.iterator().next());
this.source = source;
int d = 0;
if (fdLine != null)
{
d = 1;
this.seriesLabels.add(fdLine.getName());
this.laneVisible.add(true);
}
for (int series = 0; series < source.getNumberOfSeries(); series++)
{
this.seriesLabels.add(series + d, source.getName(series));
this.laneVisible.add(true);
}
setChart(createChart());
setLowerDomainBound(0.0);
setLowerRangeBound(0.0);
// setup updater to do the actual work in another thread
this.graphUpdater = new GraphUpdater<>("Fundamental diagram worker", Thread.currentThread(), (t) ->
{
if (this.getSource() != null)
{
this.getSource().increaseTime(t);
notifyPlotChange();
}
});
// let this diagram be notified by the source
source.addFundamentalDiagram(this);
}
/**
* Create a chart.
* @return JFreeChart; chart
*/
private JFreeChart createChart()
{
NumberAxis xAxis = new NumberAxis(this.getDomainQuantity().label());
NumberAxis yAxis = new NumberAxis(this.getRangeQuantity().label());
XYLineAndShapeRenderer renderer = new XYLineAndShapeRenderer()
{
/** */
private static final long serialVersionUID = 20181022L;
/** {@inheritDoc} */
@SuppressWarnings("synthetic-access")
@Override
public boolean isSeriesVisible(final int series)
{
return FundamentalDiagram.this.laneVisible.get(series);
}
}; // XYDotRenderer doesn't support different markers
renderer.setDefaultLinesVisible(false);
if (hasLineFD())
{
int series = this.getSource().getNumberOfSeries();
renderer.setSeriesLinesVisible(series, true);
renderer.setSeriesPaint(series, Color.BLACK);
renderer.setSeriesShapesVisible(series, false);
}
XYPlot plot = new XYPlot(this, xAxis, yAxis, renderer);
boolean showLegend = true;
if (!hasLineFD() && this.getSource().getNumberOfSeries() < 2)
{
plot.setFixedLegendItems(null);
showLegend = false;
}
else
{
this.legend = new LegendItemCollection();
for (int i = 0; i < this.getSource().getNumberOfSeries(); i++)
{
LegendItem li = new LegendItem(this.getSource().getName(i));
li.setSeriesKey(i); // lane series, not curve series
li.setShape(renderer.lookupLegendShape(i));
li.setFillPaint(renderer.lookupSeriesPaint(i));
this.legend.add(li);
}
if (hasLineFD())
{
LegendItem li = new LegendItem(this.fdLine.getName());
li.setSeriesKey(-1);
this.legend.add(li);
}
plot.setFixedLegendItems(this.legend);
showLegend = true;
}
return new JFreeChart(getCaption(), JFreeChart.DEFAULT_TITLE_FONT, plot, showLegend);
}
/** {@inheritDoc} */
@Override
protected void increaseTime(final Time time)
{
if (this.graphUpdater != null && time.si >= this.getSource().getAggregationPeriod().si) // null during construction
{
this.graphUpdater.offer(time);
}
}
/** {@inheritDoc} */
@Override
public int getSeriesCount()
{
if (this.getSource() == null)
{
return 0;
}
return this.getSource().getNumberOfSeries() + (hasLineFD() ? 1 : 0);
}
/** {@inheritDoc} */
@Override
public Comparable getSeriesKey(final int series)
{
return this.seriesLabels.get(series);
}
/** {@inheritDoc} */
@SuppressWarnings("rawtypes")
@Override
public int indexOf(final Comparable seriesKey)
{
int index = this.seriesLabels.indexOf(seriesKey);
return index < 0 ? 0 : index;
}
/** {@inheritDoc} */
@Override
public DomainOrder getDomainOrder()
{
return DomainOrder.NONE;
}
/** {@inheritDoc} */
@Override
public int getItemCount(final int series)
{
if (hasLineFD() && series == getSeriesCount() - 1)
{
return this.fdLine.getValues(this.domainQuantity).length;
}
return this.getSource().getItemCount(series);
}
/** {@inheritDoc} */
@Override
public Number getX(final int series, final int item)
{
return getXValue(series, item);
}
/** {@inheritDoc} */
@Override
public double getXValue(final int series, final int item)
{
if (hasLineFD() && series == getSeriesCount() - 1)
{
return this.fdLine.getValues(this.domainQuantity)[item];
}
return this.getDomainQuantity().getValue(this.getSource(), series, item);
}
/** {@inheritDoc} */
@Override
public Number getY(final int series, final int item)
{
return getYValue(series, item);
}
/** {@inheritDoc} */
@Override
public double getYValue(final int series, final int item)
{
if (hasLineFD() && series == getSeriesCount() - 1)
{
return this.fdLine.getValues(this.rangeQuantity)[item];
}
return this.getRangeQuantity().getValue(this.getSource(), series, item);
}
/** {@inheritDoc} */
@Override
public GraphType getGraphType()
{
return GraphType.FUNDAMENTAL_DIAGRAM;
}
/** {@inheritDoc} */
@Override
public String getStatusLabel(final double domainValue, final double rangeValue)
{
return this.getDomainQuantity().format(domainValue) + ", " + this.getRangeQuantity().format(rangeValue) + ", " + this
.getOtherQuantity().format(this.getDomainQuantity().computeOther(this.getRangeQuantity(), domainValue, rangeValue))
+ this.getTimeInfo();
}
/**
* Quantity enum defining density, flow and speed.
*
* Copyright (c) 2013-2020 Delft University of Technology, PO Box 5, 2600 AA, Delft, the Netherlands. All rights reserved.
*
* BSD-style license. See OpenTrafficSim License .
*
* @version $Revision$, $LastChangedDate$, by $Author$, initial version 16 okt. 2018
* @author Alexander Verbraeck
* @author Peter Knoppers
* @author Wouter Schakel
*/
public enum Quantity
{
/** Density. */
DENSITY
{
/** {@inheritDoc} */
@Override
public String label()
{
return "Density [veh/km] \u2192";
}
/** {@inheritDoc} */
@Override
public String format(final double value)
{
return String.format("%.0f veh/km", value);
}
/** {@inheritDoc} */
@Override
public double getValue(final FdSource src, final int series, final int item)
{
return 1000 * src.getDensity(series, item);
}
/** {@inheritDoc} */
@Override
public double computeOther(final Quantity pairing, final double thisValue, final double pairedValue)
{
// .......................... speed = flow / density .. flow = density * speed
return pairing.equals(FLOW) ? pairedValue / thisValue : thisValue * pairedValue;
}
},
/** Flow. */
FLOW
{
/** {@inheritDoc} */
@Override
public String label()
{
return "Flow [veh/h] \u2192";
}
/** {@inheritDoc} */
@Override
public String format(final double value)
{
return String.format("%.0f veh/h", value);
}
/** {@inheritDoc} */
@Override
public double getValue(final FdSource src, final int series, final int item)
{
return 3600 * src.getFlow(series, item);
}
/** {@inheritDoc} */
@Override
public double computeOther(final Quantity pairing, final double thisValue, final double pairedValue)
{
// speed = flow * density ... density = flow / speed
return thisValue / pairedValue;
}
},
/** Speed. */
SPEED
{
/** {@inheritDoc} */
@Override
public String label()
{
return "Speed [km/h] \u2192";
}
/** {@inheritDoc} */
@Override
public String format(final double value)
{
return String.format("%.1f km/h", value);
}
/** {@inheritDoc} */
@Override
public double getValue(final FdSource src, final int series, final int item)
{
return 3.6 * src.getSpeed(series, item);
}
/** {@inheritDoc} */
@Override
public double computeOther(final Quantity pairing, final double thisValue, final double pairedValue)
{
// ............................. flow = speed * density .. density = flow / speed
return pairing.equals(DENSITY) ? thisValue * pairedValue : pairedValue / thisValue;
}
};
/**
* Returns an axis label of the quantity.
* @return String; axis label of the quantity
*/
public abstract String label();
/**
* Formats a value for status display.
* @param value double; value
* @return String; formatted string including quantity
*/
public abstract String format(double value);
/**
* Get scaled value in presentation unit.
* @param src FdSource; the data source
* @param series int; series number
* @param item int; item number in series
* @return double; scaled value in presentation unit
*/
public abstract double getValue(FdSource src, int series, int item);
/**
* Compute the value of the 3rd quantity.
* @param pairing Quantity; quantity on other axis
* @param thisValue double; value of this quantity
* @param pairedValue double; value of the paired quantity on the other axis
* @return double; value of the 3rd quantity
*/
public abstract double computeOther(Quantity pairing, double thisValue, double pairedValue);
}
/**
* Data source for a fundamental diagram.
*
* Copyright (c) 2013-2020 Delft University of Technology, PO Box 5, 2600 AA, Delft, the Netherlands. All rights reserved.
*
* BSD-style license. See OpenTrafficSim License .
*
* @version $Revision$, $LastChangedDate$, by $Author$, initial version 16 okt. 2018
* @author Alexander Verbraeck
* @author Peter Knoppers
* @author Wouter Schakel
*/
public interface FdSource
{
/**
* Returns the possible intervals.
* @return double[]; possible intervals
*/
default double[] getPossibleAggregationPeriods()
{
return DEFAULT_PERIODS;
}
/**
* Returns the possible frequencies, as a factor on 1 / 'aggregation interval'.
* @return int[]; possible frequencies
*/
default int[] getPossibleUpdateFrequencies()
{
return DEFAULT_UPDATE_FREQUENCIES;
}
/**
* Add fundamental diagram. Used to notify diagrams when data has changed.
* @param fundamentalDiagram FundamentalDiagram; fundamental diagram
*/
void addFundamentalDiagram(FundamentalDiagram fundamentalDiagram);
/**
* Clears all connected fundamental diagrams.
*/
void clearFundamentalDiagrams();
/**
* Returns the diagrams.
* @return ImmutableSet<FundamentalDiagram> diagrams
*/
ImmutableSet getDiagrams();
/**
* The update interval.
* @return Duration; update interval
*/
Duration getUpdateInterval();
/**
* Changes the update interval.
* @param interval Duration; update interval
* @param time Time; time until which data has to be recalculated
*/
void setUpdateInterval(Duration interval, Time time);
/**
* The aggregation period.
* @return Duration; aggregation period
*/
Duration getAggregationPeriod();
/**
* Changes the aggregation period.
* @param period Duration; aggregation period
*/
void setAggregationPeriod(Duration period);
/**
* Recalculates the data after the aggregation or update time was changed.
* @param time Time; time up to which recalculation is required
*/
void recalculate(Time time);
/**
* Return the delay for graph updates so future influencing events have occurred, e.d. GTU move's.
* @return Duration; graph delay
*/
Duration getDelay();
/**
* Increase the time span.
* @param time Time; time to increase to
*/
void increaseTime(Time time);
/**
* Returns the number of series (i.e. lanes or 1 for aggregated).
* @return int; number of series
*/
int getNumberOfSeries();
/**
* Returns a name of the series.
* @param series int; series number
* @return String; name of the series
*/
String getName(int series);
/**
* Returns the number of items in the series.
* @param series int; series number
* @return int; number of items in the series
*/
int getItemCount(int series);
/**
* Return the SI flow value of item in series.
* @param series int; series number
* @param item int; item number in the series
* @return double; SI flow value of item in series
*/
double getFlow(int series, int item);
/**
* Return the SI density value of item in series.
* @param series int; series number
* @param item int; item number in the series
* @return double; SI density value of item in series
*/
double getDensity(int series, int item);
/**
* Return the SI speed value of item in series.
* @param series int; series number
* @param item int; item number in the series
* @return double; SI speed value of item in series
*/
double getSpeed(int series, int item);
/**
* Returns whether this source aggregates lanes.
* @return boolean; whether this source aggregates lanes
*/
boolean isAggregate();
/**
* Sets the name of the series when aggregated, e.g. for legend. Default is "Aggregate".
* @param aggregateName String; name of the series when aggregated
*/
void setAggregateName(String aggregateName);
}
/**
* Abstract implementation to link to fundamental diagrams.
*/
abstract static class AbstractFdSource implements FdSource
{
/** Fundamental diagrams. */
private Set fundamentalDiagrams = new LinkedHashSet<>();
/** {@inheritDoc} */
@Override
public void addFundamentalDiagram(final FundamentalDiagram fundamentalDiagram)
{
this.fundamentalDiagrams.add(fundamentalDiagram);
}
/** {@inheritDoc} */
@Override
public void clearFundamentalDiagrams()
{
this.fundamentalDiagrams.clear();
}
/** {@inheritDoc} */
@Override
public ImmutableSet getDiagrams()
{
return new ImmutableLinkedHashSet<>(this.fundamentalDiagrams);
}
}
/**
* Creates a {@code Source} from a sampler and positions.
* @param sampler Sampler<?>; sampler
* @param crossSection GraphCrossSection<KpiLaneDirection>; cross section
* @param aggregateLanes boolean; whether to aggregate the positions
* @param aggregationTime Duration; aggregation time (and update time)
* @param harmonic boolean; harmonic mean
* @return Source; source for a fundamental diagram from a sampler and positions
*/
@SuppressWarnings("methodlength")
public static FdSource sourceFromSampler(final Sampler> sampler, final GraphCrossSection crossSection,
final boolean aggregateLanes, final Duration aggregationTime, final boolean harmonic)
{
return new CrossSectionSamplerFdSource<>(sampler, crossSection, aggregateLanes, aggregationTime, harmonic);
}
/**
* Creates a {@code Source} from a sampler and positions.
* @param sampler Sampler<?>; sampler
* @param path GraphPath<KpiLaneDirection>; cross section
* @param aggregateLanes boolean; whether to aggregate the positions
* @param aggregationTime Duration; aggregation time (and update time)
* @return Source; source for a fundamental diagram from a sampler and positions
*/
public static FdSource sourceFromSampler(final Sampler> sampler, final GraphPath path,
final boolean aggregateLanes, final Duration aggregationTime)
{
return new PathSamplerFdSource<>(sampler, path, aggregateLanes, aggregationTime);
}
/**
* Combines multiple sources in to one source.
* @param sources Map<String, FdSource>; sources coupled to their names for in the legend
* @return FdSource; combined source
*/
public static FdSource combinedSource(final Map sources)
{
return new MultiFdSource(sources);
}
/**
* Fundamental diagram source based on a cross section.
* @param underlying source type
*/
private static class CrossSectionSamplerFdSource> extends
AbstractSpaceSamplerFdSource
{
/** Harmonic mean. */
private final boolean harmonic;
/**
* Constructor.
* @param sampler Sampler<?>; sampler
* @param crossSection S; cross section
* @param aggregateLanes boolean; whether to aggregate the lanes
* @param aggregationPeriod Duration; initial aggregation {@link Period}
* @param harmonic boolean; harmonic mean
*/
CrossSectionSamplerFdSource(final Sampler> sampler, final S crossSection, final boolean aggregateLanes,
final Duration aggregationPeriod, final boolean harmonic)
{
super(sampler, crossSection, aggregateLanes, aggregationPeriod);
this.harmonic = harmonic;
}
/** {@inheritDoc} */
@Override
protected void getMeasurements(final Trajectory> trajectory, final Time startTime, final Time endTime,
final Length length, final int series, final double[] measurements)
{
Length x = getSpace().position(series);
if (GraphUtil.considerTrajectory(trajectory, x, x))
{
// detailed check
Time t = trajectory.getTimeAtPosition(x);
if (t.si >= startTime.si && t.si < endTime.si)
{
measurements[0] = 1; // first = count
measurements[1] = // second = sum of (inverted) speeds
this.harmonic ? 1.0 / trajectory.getSpeedAtPosition(x).si : trajectory.getSpeedAtPosition(x).si;
}
}
}
/** {@inheritDoc} */
@Override
protected double getVehicleCount(final double first, final double second)
{
return first; // is divided by aggregation period by caller
}
/** {@inheritDoc} */
@Override
protected double getSpeed(final double first, final double second)
{
return this.harmonic ? first / second : second / first;
}
/** {@inheritDoc} */
@Override
public String toString()
{
return "CrossSectionSamplerFdSource [harmonic=" + this.harmonic + "]";
}
}
/**
* Fundamental diagram source based on a path. Density, speed and flow over the entire path are calculated per lane.
* @param underlying source type
*/
private static class PathSamplerFdSource> extends
AbstractSpaceSamplerFdSource
{
/**
* Constructor.
* @param sampler Sampler<?>; sampler
* @param path S; path
* @param aggregateLanes boolean; whether to aggregate the lanes
* @param aggregationPeriod Duration; initial aggregation period
*/
PathSamplerFdSource(final Sampler> sampler, final S path, final boolean aggregateLanes,
final Duration aggregationPeriod)
{
super(sampler, path, aggregateLanes, aggregationPeriod);
}
/** {@inheritDoc} */
@Override
protected void getMeasurements(final Trajectory> trajectory, final Time startTime, final Time endTime,
final Length length, final int sereies, final double[] measurements)
{
SpaceTimeView stv = trajectory.getSpaceTimeView(Length.ZERO, length, startTime, endTime);
measurements[0] = stv.getDistance().si; // first = total traveled distance
measurements[1] = stv.getTime().si; // second = total traveled time
}
/** {@inheritDoc} */
@Override
protected double getVehicleCount(final double first, final double second)
{
return first / getSpace().getTotalLength().si; // is divided by aggregation period by caller
}
/** {@inheritDoc} */
@Override
protected double getSpeed(final double first, final double second)
{
return first / second;
}
/** {@inheritDoc} */
@Override
public String toString()
{
return "PathSamplerFdSource []";
}
}
/**
* Abstract class that deals with updating and recalculating the fundamental diagram.
* @param underlying source type
*/
private abstract static class AbstractSpaceSamplerFdSource> extends
AbstractFdSource
{
/** Period number of last calculated period. */
private int periodNumber = -1;
/** Update interval. */
private Duration updateInterval;
/** Aggregation period. */
private Duration aggregationPeriod;
/** Last update time. */
private Time lastUpdateTime;
/** Number of series. */
private final int nSeries;
/** First data. */
private double[][] firstMeasurement;
/** Second data. */
private double[][] secondMeasurement;
/** Whether the plot is in a process such that the data is invalid for the current draw of the plot. */
private boolean invalid = false;
/** The sampler. */
private final Sampler> sampler;
/** Space. */
private final S space;
/** Whether to aggregate the lanes. */
private final boolean aggregateLanes;
/** Name of the series when aggregated. */
private String aggregateName = "Aggregate";
/** For each series (lane), the highest trajectory number (n) below which all trajectories were also handled (0:n). */
private Map lastConsecutivelyAssignedTrajectories = new LinkedHashMap<>();
/** For each series (lane), a list of handled trajectories above n, excluding n+1. */
private Map> assignedTrajectories = new LinkedHashMap<>();
/**
* Constructor.
* @param sampler Sampler<?>; sampler
* @param space S; space
* @param aggregateLanes boolean; whether to aggregate the lanes
* @param aggregationPeriod Duration; initial aggregation period
*/
AbstractSpaceSamplerFdSource(final Sampler> sampler, final S space, final boolean aggregateLanes,
final Duration aggregationPeriod)
{
this.sampler = sampler;
this.space = space;
this.aggregateLanes = aggregateLanes;
this.nSeries = aggregateLanes ? 1 : space.getNumberOfSeries();
// create and register kpi lane directions
for (KpiLaneDirection laneDirection : space)
{
sampler.registerSpaceTimeRegion(new SpaceTimeRegion(laneDirection, Length.ZERO, laneDirection.getLaneData()
.getLength(), sampler.now(), Time.instantiateSI(Double.MAX_VALUE)));
// info per kpi lane direction
this.lastConsecutivelyAssignedTrajectories.put(laneDirection, -1);
this.assignedTrajectories.put(laneDirection, new TreeSet<>());
}
this.updateInterval = aggregationPeriod;
this.aggregationPeriod = aggregationPeriod;
this.firstMeasurement = new double[this.nSeries][10];
this.secondMeasurement = new double[this.nSeries][10];
}
/**
* Returns the space.
* @return S; space
*/
protected S getSpace()
{
return this.space;
}
/** {@inheritDoc} */
@Override
public Duration getUpdateInterval()
{
return this.updateInterval;
}
/** {@inheritDoc} */
@Override
public void setUpdateInterval(final Duration interval, final Time time)
{
if (this.updateInterval != interval)
{
this.updateInterval = interval;
recalculate(time);
}
}
/** {@inheritDoc} */
@Override
public Duration getAggregationPeriod()
{
return this.aggregationPeriod;
}
/** {@inheritDoc} */
@Override
public void setAggregationPeriod(final Duration period)
{
if (this.aggregationPeriod != period)
{
this.aggregationPeriod = period;
}
}
/** {@inheritDoc} */
@Override
public void recalculate(final Time time)
{
new Thread(new Runnable()
{
@Override
@SuppressWarnings("synthetic-access")
public void run()
{
synchronized (AbstractSpaceSamplerFdSource.this)
{
// an active plot draw will now request data on invalid items
AbstractSpaceSamplerFdSource.this.invalid = true;
AbstractSpaceSamplerFdSource.this.periodNumber = -1;
AbstractSpaceSamplerFdSource.this.updateInterval = getUpdateInterval();
AbstractSpaceSamplerFdSource.this.firstMeasurement =
new double[AbstractSpaceSamplerFdSource.this.nSeries][10];
AbstractSpaceSamplerFdSource.this.secondMeasurement =
new double[AbstractSpaceSamplerFdSource.this.nSeries][10];
AbstractSpaceSamplerFdSource.this.lastConsecutivelyAssignedTrajectories.clear();
AbstractSpaceSamplerFdSource.this.assignedTrajectories.clear();
for (KpiLaneDirection lane : AbstractSpaceSamplerFdSource.this.space)
{
AbstractSpaceSamplerFdSource.this.lastConsecutivelyAssignedTrajectories.put(lane, -1);
AbstractSpaceSamplerFdSource.this.assignedTrajectories.put(lane, new TreeSet<>());
}
AbstractSpaceSamplerFdSource.this.lastUpdateTime = null; // so the increaseTime call is not skipped
while ((AbstractSpaceSamplerFdSource.this.periodNumber + 1) * getUpdateInterval().si
+ AbstractSpaceSamplerFdSource.this.aggregationPeriod.si <= time.si)
{
increaseTime(Time.instantiateSI((AbstractSpaceSamplerFdSource.this.periodNumber + 1)
* getUpdateInterval().si + AbstractSpaceSamplerFdSource.this.aggregationPeriod.si));
// TODO: if multiple plots are coupled to the same source, other plots are not invalidated
// TODO: change of aggregation period / update freq, is not updated in the GUI on other plots
// for (FundamentalDiagram diagram : getDiagrams())
// {
// }
}
AbstractSpaceSamplerFdSource.this.invalid = false;
}
}
}, "Fundamental diagram recalculation").start();
}
/** {@inheritDoc} */
@Override
public Duration getDelay()
{
return Duration.instantiateSI(1.0);
}
/** {@inheritDoc} */
@Override
public synchronized void increaseTime(final Time time)
{
if (time.si < this.aggregationPeriod.si)
{
// skip periods that fall below 0.0 time
return;
}
if (this.lastUpdateTime != null && time.le(this.lastUpdateTime))
{
// skip updates from different graphs at the same time
return;
}
this.lastUpdateTime = time;
// ensure capacity
int nextPeriod = this.periodNumber + 1;
if (nextPeriod >= this.firstMeasurement[0].length - 1)
{
for (int i = 0; i < this.nSeries; i++)
{
this.firstMeasurement[i] = GraphUtil.ensureCapacity(this.firstMeasurement[i], nextPeriod + 1);
this.secondMeasurement[i] = GraphUtil.ensureCapacity(this.secondMeasurement[i], nextPeriod + 1);
}
}
// loop positions and trajectories
Time startTime = time.minus(this.aggregationPeriod);
double first = 0;
double second = 0.0;
for (int series = 0; series < this.space.getNumberOfSeries(); series++)
{
Iterator extends KpiLaneDirection> it = this.space.iterator(series);
while (it.hasNext())
{
KpiLaneDirection lane = it.next();
if (!this.sampler.getSamplerData().contains(lane))
{
// sampler has not yet started to record on this lane
continue;
}
TrajectoryGroup> trajectoryGroup = this.sampler.getSamplerData().getTrajectoryGroup(lane);
int last = this.lastConsecutivelyAssignedTrajectories.get(lane);
SortedSet assigned = this.assignedTrajectories.get(lane);
if (!this.aggregateLanes)
{
first = 0.0;
second = 0.0;
}
// Length x = this.crossSection.position(series);
int i = 0;
for (Trajectory> trajectory : trajectoryGroup.getTrajectories())
{
// we can skip all assigned trajectories, which are all up to and including 'last' and all in 'assigned'
try
{
if (i > last && !assigned.contains(i))
{
// quickly filter
if (GraphUtil.considerTrajectory(trajectory, startTime, time))
{
double[] measurements = new double[2];
getMeasurements(trajectory, startTime, time, lane.getLaneData().getLength(), series,
measurements);
first += measurements[0];
second += measurements[1];
}
if (trajectory.getT(trajectory.size() - 1) < startTime.si - getDelay().si)
{
assigned.add(i);
}
}
i++;
}
catch (SamplingException exception)
{
throw new RuntimeException("Unexpected exception while counting trajectories.", exception);
}
}
if (!this.aggregateLanes)
{
this.firstMeasurement[series][nextPeriod] = first;
this.secondMeasurement[series][nextPeriod] = second;
}
// consolidate list of assigned trajectories in 'all up to n' and 'these specific ones beyond n'
if (!assigned.isEmpty())
{
int possibleNextLastAssigned = assigned.first();
while (possibleNextLastAssigned == last + 1) // consecutive or very first
{
last = possibleNextLastAssigned;
assigned.remove(possibleNextLastAssigned);
possibleNextLastAssigned = assigned.isEmpty() ? -1 : assigned.first();
}
this.lastConsecutivelyAssignedTrajectories.put(lane, last);
}
}
}
if (this.aggregateLanes)
{
// whatever we measured, it was summed and can be normalized per line like this
this.firstMeasurement[0][nextPeriod] = first / this.space.getNumberOfSeries();
this.secondMeasurement[0][nextPeriod] = second / this.space.getNumberOfSeries();
}
this.periodNumber = nextPeriod;
}
/** {@inheritDoc} */
@Override
public int getNumberOfSeries()
{
// if there is an active plot draw as the data is being recalculated, data on invalid items is requested
// a call to getSeriesCount() indicates a new draw, and during a recalculation the data is limited but valid
this.invalid = false;
return this.nSeries;
}
/** {@inheritDoc} */
@Override
public void setAggregateName(final String aggregateName)
{
this.aggregateName = aggregateName;
}
/** {@inheritDoc} */
@Override
public String getName(final int series)
{
if (this.aggregateLanes)
{
return this.aggregateName;
}
return this.space.getName(series);
}
/** {@inheritDoc} */
@Override
public int getItemCount(final int series)
{
return this.periodNumber + 1;
}
/** {@inheritDoc} */
@Override
public final double getFlow(final int series, final int item)
{
if (this.invalid)
{
return Double.NaN;
}
return getVehicleCount(this.firstMeasurement[series][item], this.secondMeasurement[series][item])
/ this.aggregationPeriod.si;
}
/** {@inheritDoc} */
@Override
public final double getDensity(final int series, final int item)
{
return getFlow(series, item) / getSpeed(series, item);
}
/** {@inheritDoc} */
@Override
public final double getSpeed(final int series, final int item)
{
if (this.invalid)
{
return Double.NaN;
}
return getSpeed(this.firstMeasurement[series][item], this.secondMeasurement[series][item]);
}
/** {@inheritDoc} */
@Override
public final boolean isAggregate()
{
return this.aggregateLanes;
}
/**
* Returns the first and the second measurement of a trajectory. For a cross-section this is 1 and the vehicle speed if
* the trajectory crosses the location, and for a path it is the traveled distance and the traveled time. If the
* trajectory didn't cross the cross section or space-time range, both should be 0.
* @param trajectory Trajectory<?>; trajectory
* @param startTime Time; start time of aggregation period
* @param endTime Time; end time of aggregation period
* @param length Length; length of the section (to cut off possible lane overshoot of trajectories)
* @param series int; series number in the section
* @param measurements double[]; array with length 2 to place the first and second measurement in
*/
protected abstract void getMeasurements(Trajectory> trajectory, Time startTime, Time endTime, Length length,
int series, double[] measurements);
/**
* Returns the vehicle count of two related measurement values. For a cross section: vehicle count & sum of speeds (or
* sum of inverted speeds for the harmonic mean). For a path: total traveled distance & total traveled time.
*
* The value will be divided by the aggregation time to calculate flow. Hence, for a cross section the first measurement
* should be returned, while for a path the first measurement divided by the section length should be returned. That
* will end up to equate to {@code q = sum(x)/XT}.
* @param first double; first measurement value
* @param second double; second measurement value
* @return double; flow
*/
protected abstract double getVehicleCount(double first, double second);
/**
* Returns the speed of two related measurement values. For a cross section: vehicle count & sum of speeds (or sum of
* inverted speeds for the harmonic mean). For a path: total traveled distance & total traveled time.
* @param first double; first measurement value
* @param second double; second measurement value
* @return double; speed
*/
protected abstract double getSpeed(double first, double second);
}
/**
* Class to group multiple sources in plot.
*/
// TODO: when sub-sources recalculate responding to a click in the graph, they notify only their coupled plots, which are
// none
private static class MultiFdSource extends AbstractFdSource
{
/** Sources. */
private FdSource[] sources;
/** Source names. */
private String[] sourceNames;
/**
* Constructor.
* @param sources Map<String, FdSource>; sources
*/
MultiFdSource(final Map sources)
{
Throw.when(sources == null || sources.size() == 0, IllegalArgumentException.class,
"At least 1 source is required.");
this.sources = new FdSource[sources.size()];
this.sourceNames = new String[sources.size()];
int index = 0;
for (Entry entry : sources.entrySet())
{
this.sources[index] = entry.getValue();
this.sourceNames[index] = entry.getKey();
index++;
}
}
/**
* Returns from a series number overall, the index of the sub-source and the series index in that source.
* @param series int; overall series number
* @return index of the sub-source and the series index in that source
*/
private int[] getSourceAndSeries(final int series)
{
int source = 0;
int sourceSeries = series;
while (sourceSeries >= this.sources[source].getNumberOfSeries())
{
sourceSeries -= this.sources[source].getNumberOfSeries();
source++;
}
return new int[] {source, sourceSeries};
}
/** {@inheritDoc} */
@Override
public Duration getUpdateInterval()
{
return this.sources[0].getUpdateInterval();
}
/** {@inheritDoc} */
@Override
public void setUpdateInterval(final Duration interval, final Time time)
{
for (FdSource source : this.sources)
{
source.setUpdateInterval(interval, time);
}
}
/** {@inheritDoc} */
@Override
public Duration getAggregationPeriod()
{
return this.sources[0].getAggregationPeriod();
}
/** {@inheritDoc} */
@Override
public void setAggregationPeriod(final Duration period)
{
for (FdSource source : this.sources)
{
source.setAggregationPeriod(period);
}
}
/** {@inheritDoc} */
@Override
public void recalculate(final Time time)
{
for (FdSource source : this.sources)
{
source.recalculate(time);
}
}
/** {@inheritDoc} */
@Override
public Duration getDelay()
{
return this.sources[0].getDelay();
}
/** {@inheritDoc} */
@Override
public void increaseTime(final Time time)
{
for (FdSource source : this.sources)
{
source.increaseTime(time);
}
}
/** {@inheritDoc} */
@Override
public int getNumberOfSeries()
{
int numberOfSeries = 0;
for (FdSource source : this.sources)
{
numberOfSeries += source.getNumberOfSeries();
}
return numberOfSeries;
}
/** {@inheritDoc} */
@Override
public String getName(final int series)
{
int[] ss = getSourceAndSeries(series);
return this.sourceNames[ss[0]] + (this.sources[ss[0]].isAggregate() ? "" : ": " + this.sources[ss[0]].getName(
ss[1]));
}
/** {@inheritDoc} */
@Override
public int getItemCount(final int series)
{
int[] ss = getSourceAndSeries(series);
return this.sources[ss[0]].getItemCount(ss[1]);
}
/** {@inheritDoc} */
@Override
public double getFlow(final int series, final int item)
{
int[] ss = getSourceAndSeries(series);
return this.sources[ss[0]].getFlow(ss[1], item);
}
/** {@inheritDoc} */
@Override
public double getDensity(final int series, final int item)
{
int[] ss = getSourceAndSeries(series);
return this.sources[ss[0]].getDensity(ss[1], item);
}
/** {@inheritDoc} */
@Override
public double getSpeed(final int series, final int item)
{
int[] ss = getSourceAndSeries(series);
return this.sources[ss[0]].getSpeed(ss[1], item);
}
/** {@inheritDoc} */
@Override
public boolean isAggregate()
{
return false;
}
/** {@inheritDoc} */
@Override
public void setAggregateName(final String aggregateName)
{
// invalid for this source type
}
}
/**
* Defines a line plot for a fundamental diagram.
*/
public interface FdLine
{
/**
* Return the values for the given quantity. For two quantities, this should result in a 2D fundamental diagram line.
* @param quantity Quantity; quantity to return value for.
* @return double[]; values for quantity
*/
double[] getValues(Quantity quantity);
/**
* Returns the name of the line, as shown in the legend.
* @return String; name of the line, as shown in the legend
*/
String getName();
}
/** {@inheritDoc} */
@Override
public String toString()
{
return "FundamentalDiagram [source=" + this.getSource() + ", domainQuantity=" + this.getDomainQuantity()
+ ", rangeQuantity=" + this.getRangeQuantity() + ", otherQuantity=" + this.getOtherQuantity() + ", seriesLabels="
+ this.seriesLabels + ", graphUpdater=" + this.graphUpdater + ", timeInfo=" + this.getTimeInfo() + ", legend="
+ this.legend + ", laneVisible=" + this.laneVisible + "]";
}
/**
* Get the data source.
* @return FdSource; the data source
*/
public FdSource getSource()
{
return this.source;
}
/**
* Retrievee the legend of this FundamentalDiagram.
* @return LegendItemCollection; the legend
*/
public LegendItemCollection getLegend()
{
return this.legend;
}
/**
* Return the list of lane visibility flags.
* @return List<Boolean>; the list of lane visibility flags
*/
public List getLaneVisible()
{
return this.laneVisible;
}
/**
* Return the domain quantity.
* @return Quantity; the domain quantity
*/
public Quantity getDomainQuantity()
{
return this.domainQuantity;
}
/**
* Set the domain quantity.
* @param domainQuantity Quantity; the new domain quantity
*/
public void setDomainQuantity(final Quantity domainQuantity)
{
this.domainQuantity = domainQuantity;
}
/**
* Get the other (non domain; vertical axis) quantity.
* @return Quantity; the quantity for the vertical axis
*/
public Quantity getOtherQuantity()
{
return this.otherQuantity;
}
/**
* Set the other (non domain; vertical axis) quantity.
* @param otherQuantity Quantity; the quantity for the vertical axis
*/
public void setOtherQuantity(final Quantity otherQuantity)
{
this.otherQuantity = otherQuantity;
}
/**
* Get the range quantity.
* @return Quantity; the range quantity
*/
public Quantity getRangeQuantity()
{
return this.rangeQuantity;
}
/**
* Set the range quantity.
* @param rangeQuantity Quantity; the new range quantity
*/
public void setRangeQuantity(final Quantity rangeQuantity)
{
this.rangeQuantity = rangeQuantity;
}
/**
* Retrieve the time info.
* @return String; the time info
*/
public String getTimeInfo()
{
return this.timeInfo;
}
/**
* Set the time info.
* @param timeInfo String; the new time info
*/
public void setTimeInfo(final String timeInfo)
{
this.timeInfo = timeInfo;
}
/**
* Return whether the plot has a fundamental diagram line.
* @return boolean; whether the plot has a fundamental diagram line
*/
public boolean hasLineFD()
{
return this.fdLine != null;
}
}