
TU Delft | Sim0MQ Messages for OTS v1.5 1

Sim0MQ Message Structure

Author: Alexander Verbraeck, Sibel Eker, TU Delft
Version: 1.5
Date: 29 April 2017

Table of Changes:

Version Date Author Major changes
1.0 04-03-2017 Verbraeck Initial version
1.1 16-03-2017 Eker Message descriptions, update to Figure 1 and addition of

Figure 2.
1.2 19-4-2017 Eker Changes in the StartFederate and FederateStarted

messages
1.3 20-4-2017 Verbraeck REQ-ROUTER pattern in chapter 3 added and explained
1.4 21-04-2017 Eker Changes in the StartFederate and FederateStarted

messages related to the port number of model instances
1.5 29-04-2017 Verbraeck Units and DisplayUnits adapted to the changes in

DJUNITS version 3.00.01.
Two bytes used for the Money type as 255 is too low,
and cannot store the standard currency id codes.

TU Delft | Sim0MQ Messages for OTS v1.5 2

Table of Contents

1 Sim0MQ Basics ... 4

1.1 ØMQ Message Bus .. 4

2 Message Structure .. 5

2.1 Typed Sim0MQ Messages ... 5

2.1.1 String types (#9 - #10) ... 7
2.1.2 Array types (#11 - #17) .. 7
2.1.3 Matrix types (#18 - #24) .. 8

2.2 Coding of units ... 8
2.2.1 Float with unit (#25) .. 9
2.2.2 Double with unit (#26)... 9
2.2.3 Float array with unit (#27) ... 9
2.2.4 Double array with unit (#28) ... 10
2.2.5 Float matrix with unit (#29) ... 10
2.2.6 Double matrix with unit (#30) ... 10
2.2.7 Float matrix with unique units per column (#31) .. 11
2.2.8 Double matrix with unique units per column (#32) .. 11
2.2.9 Money units per quantity (unit types #101 - #106) .. 12

2.3 Sim0MQ Simulation Messages .. 13
2.3.1 Simulation run id ... 14
2.3.2 Sender id .. 14
2.3.3 Receiver id ... 14
2.3.4 Message type id ... 14
2.3.5 Message status id .. 14
2.3.6 Example ... 14

3 Sim0MQ Components ... 16

3.1 Federate Starter .. 16

3.2 Federation Manager .. 16

4 Notes and possible extensions ... 20

4.1 Notes ... 27

4.2 Possible extensions ... 27

Appendix A. Unit display type coding .. 28
0. Dimensionless .. 28
1. Acceleration ... 28
2. AngleSolid .. 28
3. Angle .. 28
4. Direction ... 28
5. Area .. 29

TU Delft | Sim0MQ Messages for OTS v1.5 3

6. Density ... 29
7. ElectricalCharge ... 29
8. ElectricalCurrent .. 30
9. ElectricalPotential .. 30
10. ElectricalResistance .. 30
11. Energy .. 30
12. FlowMass ... 31
13. FlowVolume ... 31
14. Force .. 32
15. Frequency... 32
16. Length .. 32
17. Position .. 33
18. LinearDensity ... 33
19. Mass ... 34
20. Power ... 34
21. Pressure ... 35
22. Speed.. 35
23. Temperature .. 35
24. AbsoluteTemperature .. 36
25. Duration ... 36
26. Time ... 36
27. Torque .. 36
28. Volume ... 37
100. Money .. 37
101. MoneyPerArea ... 41
102. MoneyPerEnergy .. 41
103. MoneyPerLength .. 41
104. MoneyPerMass .. 41
105. MoneyPerDuration .. 41
106. MoneyPerVolume .. 41

TU Delft | Sim0MQ Basics v1.5 4

1 Sim0MQ Basics

1.1 ØMQ Message Bus
Sim0MQ makes use of the ØMQ (or 0MQ or ZMQ) message bus, and contains a layer of simulation-
specific components and messages to aid in creating distributed simulation execution.

TU Delft | Message Structure v1.5 5

2 Message Structure
Several types of messages can be distinguished: internal messages to ØMQ, such as the heartbeat;
binary messages that have an internal structure that is described by external metadata, and
formatted or typed messages that have an internal structure including structure metadata to be able
to automatically parse the message. Finally, the actual messages could be generated by an external
protocol such as Google's Protocol Buffers (protobuf), which is analogous to the IDL (Interface
Description Language) in Corba and DDS (OMG's Data Distribution Service). We will focus here on the
typed messages that contain internal structure metadata as part of the message, making parsing of
the message easy.

Message structures can be characterized by the following aspects:

• magic number, aka header frame (or no header frame). The message might have a header
frame at the start, identifying it is a Sim0MQ message to distinguish it from other messages
using the bus. Messages without the magic number might be discarded.

• structure metadata. The message might have no structure metadata in the message (e.g.,
the first 4 bytes are a float in network byte order, followed by a 8-byte long in network byte
order), or have structure metadata (e.g., a byte that precedes every field and indicates the
type of field that follows. The advantage of structure metadata is that errors and
incompatibilities between versions can be easily spotted (I expected an integer in field 4, but
I got a String).

• external metadata. There might be a file that describes the structure of a message type that
can be used to automatically parse the message. This could work both for messages with or
without structure metadata. External metadata adds names to the types of the structure
metadata (e.g., field 4 is the companyName, and it cannot be null or blank). Required fields
and optional fields can be distinguished in many IDLs (Interface Description Languages).

• generative metadata. The file that describes the external metadata might be used for code
generation to create named data structures or classes that contain the same information as
the message type described by the external metadata.

2.1 Typed Sim0MQ Messages
Typed messages have a magic number, and contain structured metadata. Right now, no external
metadata or generative metadata exists. The idea of typed messages is that every field in the
message has a prefix that indicates the field type. Although this can be considered overhead, it
makes it easy to quickly create a data structure from the message without having to know the exact
naming of the fields.

A typed Sim0MQ message looks as follows:

• Frame 0. Magic number = "SMQ##" where ## stands for the version number, e.g., 01. The
magic number is coded as a String, which means that the string type indicator and number of
characters are the prefix for the magic number. Therefore, every Sim0MQ message starts
with: |9|0|0|0|5|S|I|M|, followed by a 2-digit String version number, e.g.:
|9|0|0|0|5|S|I|M|0|1|.

• Frame 1-n: Fields, where each field has a 1-byte prefix denoting the type of field. The
standard way of communicating is big-Endian, also known as network byte order. Little
endian can be supported as well, but will lead to additional translations in Java and Python

TU Delft | Message Structure v1.5 6

implementations. When multiple C or C++ components talk to each other, little endian
communication might be a good idea, though. Here, we will focus in big endian
implementations only. Every field is prefixed with a one-byte type code, e.g., 2 for a big
endian 32 bit signed two's complement integer. An int with the value 824 will therefore be
coded as: |2|0|0|3|56| using decimal notation.

The following big endian datatypes have been defined:

code name description
0 BYTE_8 Byte, 8 bit signed two's complement integer
1 SHORT_16 Short, 16 bit signed two's complement integer, big endian order
2 INT_32 Integer, 32 bit signed two's complement integer, big endian order
3 LONG_64 Long, 64 bit signed two's complement integer, big endian order
4 FLOAT_32 Float, single-precision 32-bit IEEE 754 floating point, big endian order
5 DOUBLE_64 Float, double-precision 64-bit IEEE 754 floating point, big endian

order
6 BOOLEAN_8 Boolean, sent / received as a byte; 0 = false, 1 = true
7 CHAR_8 Char, 8-bit ASCII character
8 CHAR_16 Char, 16-bit Unicode character, big endian order
9 STRING_8 String, 32-bit number-preceded byte array of 8-bits characters
10 STRING_16 String, 32-bit number-preceded char array of 16-bits characters, big-

endian order
11 BYTE_8_ARRAY Byte array, preceded by a 32-bit number indicating the number of

bytes, big-endian order
12 SHORT_16_ARRAY Short array, preceded by a 32-bit number indicating the number of

shorts, big-endian order
13 INT_32_ARRAY Integer array, preceded by a 32-bit number indicating the number of

integers, big-endian order
14 LONG_64_ARRAY Long array, preceded by a 32-bit number indicating the number of

longs, big-endian order
15 FLOAT_32_ARRAY Float array, preceded by a 32-bit number indicating the number of

floats, big-endian order
16 DOUBLE_64_ARRAY Double array, preceded by a 32-bit number indicating the number of

doubles, big-endian order
17 BOOLEAN_8_ARRAY Boolean array, preceded by a 32-bit number indicating the number

of booleans, big-endian order
18 BYTE_8_MATRIX Byte matrix, preceded by a 32-bit number row count and a 32-bit

number column count, big-endian order
19 SHORT_16_MATRIX Short matrix, preceded by a 32-bit number row count and a 32-bit

number column count, big-endian order
20 INT_32_MATRIX Integer matrix, preceded by a 32-bit number row count and a 32-bit

number column count, big-endian order
21 LONG_64_MATRIX Long matrix, preceded by a 32-bit number row count and a 32-bit

number column count, big-endian order
22 FLOAT_32_MATRIX Float matrix, preceded by a 32-bit number row count and a 32-bit

number column count, big-endian order
23 DOUBLE_64_MATRIX Double matrix, preceded by a 32-bit number row count and a 32-bit

number column count, big-endian order
24 BOOLEAN_8_MATRIX Boolean matrix, preceded by a 32-bit number row count and a 32-bit

number column count, big-endian order
25 FLOAT_32_UNIT Float stored internally as an SI unit, with unit type and display unit

attached. The total size of the field is 6 bytes. See below.
26 DOUBLE_64_UNIT Double stored internally as an SI unit, with unit type and display unit

attached. The total size of the field is 10 bytes. See below.

TU Delft | Message Structure v1.5 7

code name description
27 FLOAT_32_UNIT_ARRAY Dense float array, preceded by a 32-bit number indicating the

number of floats, big-endian order, with unit type and display unit
attached to the entire float array. See below.

28 DOUBLE_64_UNIT_ARRAY Dense double array, preceded by a 32-bit number indicating the
number of doubles, big-endian order, with unit type and display unit
attached to the entire float array. See below.

29 FLOAT_32_UNIT_MATRIX Dense float matrix, preceded by a 32-bit number row count and a
32-bit number column count, big-endian order, with unit type and
display unit attached to the entire float matrix. See below.

30 DOUBLE_64_UNIT_MATRIX Dense double matrix, preceded by a 32-bit number row count and a
32-bit number column count, big-endian order, with unit type and
display unit attached to the entire double matrix. See below.

31 FLOAT_32_UNIT2_MATRIX Dense float matrix, preceded by a 32-bit number row count and a
32-bit number column count, big-endian order, with a unique unit
type and display unit per row of the float matrix. See below.

32 DOUBLE_64_UNIT2_MATRIX Dense double matrix, preceded by a 32-bit number row count and a
32-bit number column count, big-endian order, with a unique unit
type and display unit per row of the doublematrix. See below.

As an example, this means that a message coding {"Hello world",24,TRUE} where the number 24 is an
int, is coded as:

 |9|0|0|0|5|S|I|M|0|1|9|0|0|0|11|H|e|l|l|o| |w|o|r|l|d|2|0|0|0|24|6|1|

2.1.1 String types (#9 - #10)
The string types are preceded by a 32-bit int indicating the number of characters in the array that
follows. This int is itself not preceded by a byte indicating it is an int. An ASCII string "Hello" is
therefore coded as follows:

 |9|0|0|0|5|H|e|l|l|o|

in UTF-8 and as

 |10|0|0|0|5|0x00|H|0x00|e|0x00|l|0x00|l|0x00|o|

in UTF-16.

Java uses UTF-16 internally, so Strings could be encoded in different ways, but the Sim0MQ message
header fields from section 2.3 all use UTF-8. Other strings in the message can be encoded using UTF-
16 or UTF-8, depending on the implementation of the message handler.

2.1.2 Array types (#11 - #17)
The array types are preceded by a 32-bit int indicating the number of values in the array that follows.
This int is itself not preceded by a byte indicating it is an int. An array of 8 shorts with numbers 100
through 107 is therefore coded as follows:

 |12|0|0|0|8|0|100|0|101|0|102|0|103|0|104|0|105|0|106|0|107|

TU Delft | Message Structure v1.5 8

2.1.3 Matrix types (#18 - #24)
The matrix types are preceded by a 32-bit int indicating the number of rows, followed by a 32-bit int
indicating the number of columns. These integers are not preceded by a byte indicating it is an int.
The number of values in the matrix that follows is rows * columns. The data is stored row by row,
without a separator between the rows. A matrix with 2 rows and 3 columns of integers 1-2-4 6-7-8 is
therefore coded as follows:

 |20|0|0|0|2|0|0|0|3|0|0|0|1|0|0|0|2|0|0|0|4|0|0|0|6|0|0|0|7|0|0|0|8|

2.2 Coding of units
Units are coded with one byte indicating the unit type, and one byte indicating the display type of the
unit. The SI unit or standard unit always has display type 0. Appendix A lists the display types for
each unit type. The unit types as defined currently are:

code unit name unit description default (SI) unit
0 Dimensionless Unit without a dimension []
1 Acceleration Acceleration [m/s^2]
2 AngleSolid Solid angle [steradian]
3 Angle Angle (relative) [rad]
4 Direction Angle (absolute) [rad]
5 Area Area [m^2]
6 Density Density based on mass and length [kg/m^3]
7 ElectricalCharge Electrical charge (Coulomb) [sA]
8 ElectricalCurrent Electrical current (Ampere) [A]
9 ElectricalPotential Electrical potential (Volt) [kgm^2/s^3A]
10 ElectricalResistance Electrical resistance (Ohm) [kgm^2/s^3A^2]
11 Energy Energy (Joule) [kgm^2/s^2]
12 FlowMass Mass flow rate [kg/s]
13 FlowVolume Volume flow rate [m^3/s]
14 Force Force (Newton) [kgm/s^2]
15 Frequency Frequency (Hz) [1/s]
16 Length Length (relative) [m]
17 Position Length (absolute) [m]
18 LinearDensity Linear density [1/m]
19 Mass Mass [kg]
20 Power Power (Watt) [kgm^2/s^3]
21 Pressure Pressure (Pascal) [kg/ms^2]
22 Speed Speed [m/s]
23 Temperature Temperature (relative) [K]
24 AbsoluteTemperature Temperature (absolute) [K]
25 Duration Time (relative) [s]
26 Time Time (absolute) [s]
27 Torque Torque (Newton-meter) [kgm^2/s^2]
28 Volume Volume [m^3]
100 Money Money (cost in e.g., $, €, ...) [$]
101 MoneyPerArea Money/Area (cost/m^2) [$/m^2]
102 MoneyPerEnergy Money/Energy (cost/W) [$s^3/kgm^2]
103 MoneyPerLength Money/Length (cost/m) [$/m]
104 MoneyPerMass Money/Mass (cost/kg) [$/kg]
105 MoneyPerDuration Money/Duration (cost/s) [$/s]
106 MoneyPerVolume Money/Volume (cost/m^3) [$/m^3]

TU Delft | Message Structure v1.5 9

Some of the unity types have a relative and an absolute variant. Relative scalars can be added to or
subtracted from relative and absolute scalars; absolute scalars cannot be added, but can be
subtracted, resulting in a relative scalar. As an example, one cannot add two times (3-1-2017, 5
o'clock + 3-1-2017, 3 o'clock = ??), but these values can be subtracted (3-1-2017, 5 o'clock – 3-1-
2017, 3 o'clock = 2 hours). Absolute plus relative yields e.g., 3-1-2017, 17:00 + 2 hours = 3-1-2017,
19:00. Relative values can of course be added/subtracted: 2 hours + 30 minutes = 2.5 hours. See
http://djunits.org for more information.

2.2.1 Float with unit (#25)
The internal storage of the value that is transmitted is always in the SI (or standard) unit, except for
money where the display unit is used. The value is preceded by a one-byte unit type (see the table
above) and a one-byte (or two-byte in case of Money or three-byte in case of the MoneyPerUnit)
display type (see Appendix A). As an example: suppose the unit indicates that the type is a length,
whereas the display type indicates that the internally stored value 60000.0 should be displayed as
60.0 km, this is coded as follows:

 |25|16|11|0x47|0x6A|0x60|0x00|

2.2.2 Double with unit (#26)
The internal storage of the value that is transmitted is always in the SI (or standard) unit, except for
money where the display unit is used. The value is preceded by a one-byte unit type (see the table
above) and a one-byte (or two-byte in case of Money or three-byte in case of the MoneyPerUnit)
display type (see Appendix A). As an example: suppose the unit indicates that the type is a length,
whereas the display type indicates that the internally stored value 60000.0 should be displayed as
60.0 km, this is coded as follows:

 |26|16|11|0x47|0x6A|0x60|0x00|0x00|0x00|0x00|0x00|

2.2.3 Float array with unit (#27)
After the byte with value 27, the array types have a 32-bit int indicating the number of values in the
array that follows. This int is itself not preceded by a byte indicating it is an int. Then a one-byte unit
type follows (see the table above) and a one-byte (or two-byte in case of Money or three-byte in case
of the MoneyPerUnit) display type (see Appendix A). The internal storage of the values that are
transmitted after that always use the SI (or standard) unit, except for money where the display unit is
used. As an example: when we send an array of two durations, 2.0 minutes and 2.5 minutes, this is
coded as follows:

 |27|0|0|0|2|25|7|0x40|0x00|0x00|0x00|0x40|0x20|0x00|0x00|

http://djunits.org/

TU Delft | Message Structure v1.5 10

2.2.4 Double array with unit (#28)
After the byte with value 28, the array types have a 32-bit int indicating the number of values in the
array that follows. This int is itself not preceded by a byte indicating it is an int. Then a one-byte unit
type follows (see the table above) and a one-byte (or two-byte in case of Money or three-byte in case
of the MoneyPerUnit) display type (see Appendix A). The internal storage of the values that are
transmitted after that always use the SI (or standard) unit, except for money where the display unit is
used. As an example: when we send an array of two durations, 21.2 minutes and 21.5 minutes, this is
coded as follows:

|28|0|0|0|2|25|7|0x40|0x35|0x33|0x33|0x3|0x33|0x33|0x33|
|0x40|0x35|0x80|0x00|0x00|0x00|0x00|0x00|

2.2.5 Float matrix with unit (#29)
After the byte with value 29, the matrix types have a 32-bit int indicating the number of rows in the
array that follows, followed by a 32-bit int indicating the number of columns. These integers are not
preceded by a byte indicating it is an int. Then a one-byte unit type follows (see the table above) and
a one-byte (or two-byte in case of Money or three-byte in case of the MoneyPerUnit) display type
(see Appendix A). The internal storage of the values that are transmitted after that always use the SI
(or standard) unit, except for money where the display unit is used. Summarized, the coding is as
follows:

29		R	O	W	S		C	O	L	S		UT		DT
R	1	C	1		R	1	C	2	...	R	1	C	n	
R	2	C	1		R	2	C	2	...	R	2	C	n	
...														
R	m	C	1		R	m	C	2	...	R	m	C	n	

In the language sending or receiving a matrix, the rows are denoted by the outer index, and the
columns by the inner index: matrix[row][col].

2.2.6 Double matrix with unit (#30)
After the byte with value 30, the matrix types have a 32-bit int indicating the number of rows in the
array that follows, followed by a 32-bit int indicating the number of columns. These integers are not
preceded by a byte indicating it is an int. Then a one-byte unit type follows (see the table above) and
a one-byte (or two-byte in case of Money or three-byte in case of the MoneyPerUnit) display type
(see Appendix A). The internal storage of the values that are transmitted after that always use the SI
(or standard) unit, except for money where the display unit is used. Summarized, the coding is as
follows:

30		R	O	W	S		C	O	L	S		UT		DT											
R	1	C	1		R	1	C	2	R	1	C	n
R	2	C	1		R	2	C	2	R	2	C	n
...																									
R	m	C	1		R	m	C	2	R	m	C	n

In the language sending or receiving a matrix, the rows are denoted by the outer index, and the
columns by the inner index: matrix[row][col].

TU Delft | Message Structure v1.5 11

2.2.7 Float matrix with unique units per column (#31)
After the byte with value 31, the matrix types have a 32-bit int indicating the number of rows in the
array that follows, followed by a 32-bit int indicating the number of columns. These integers are not
preceded by a byte indicating it is an int. Then a one-byte unit type for column 1 follows (see the
table above) and a one-byte (or two-byte in case of Money or three-byte in case of the
MoneyPerUnit) display type for column 1 (see Appendix A). Then the unit type and display type for
column 2, etc. The internal storage of the values that are transmitted after that always use the SI (or
standard) unit, except for money where the display unit is used. Summarized, the coding is as
follows:

31		R	O	W	S		C	O	L	S			
UT1	DT1		UT2	DT2	...	UTn	DTn						
R	1	C	1		R	1	C	2	...	R	1	C	n
R	2	C	1		R	2	C	2	...	R	2	C	n
...													
R	m	C	1		R	m	C	2	...	R	m	C	n

In the language sending or receiving a matrix, the rows are denoted by the outer index, and the
columns by the inner index: matrix[row][col].

This data type is ideal for, for instance, sending a time series of values, where column1 indicates the
time, and column 2 the value. Suppose that we have a time series of 4 values at t = {1, 2, 3, 4} hours
and dimensionless values v = {20.0, 40.0, 50.0, 60.0}, then the coding is as follows:

31		0	0	0	4		0	0	0	2
26	8		0	0						
0x3F	0x80	0x00	0x00		0x41	0xA0	0x00	0x00		
0x40	0x00	0x00	0x00		0x42	0x20	0x00	0x00		
0x40	0x00	0x40	0x00		0x42	0x48	0x00	0x00		
0x40	0x80	0x00	0x00		0x42	0x70	0x00	0x00		

2.2.8 Double matrix with unique units per column (#32)
After the byte with value 32, the matrix types have a 32-bit int indicating the number of rows in the
array that follows, followed by a 32-bit int indicating the number of columns. These integers are not
preceded by a byte indicating it is an int. Then a one-byte unit type for column 1 follows (see the
table above) and a one-byte (or two-byte in case of Money or three-byte in case of the
MoneyPerUnit) display type for column 1 (see Appendix A). Then the unit type and display type for
column 2, etc. The internal storage of the values that are transmitted after that always use the SI (or
standard) unit, except for money where the display unit is used. Summarized, the coding is as
follows:

32		R	O	W	S		C	O	L	S															
UT1	DT1		UT2	DT2	...	UTn	DTn																		
R	1	C	1		R	1	C	2	R	1	C	n
R	2	C	1		R	2	C	2	R	2	C	n
...																									
R	m	C	1		R	m	C	2	R	m	C	n

TU Delft | Message Structure v1.5 12

In the language sending or receiving a matrix, the rows are denoted by the outer index, and the
columns by the inner index: matrix[row][col].

This data type is ideal for, for instance, sending a time series of values, where column1 indicates the
time, and column 2 the value. Suppose that we have a time series of 4 values at dimensionless years
{2010, 2011, 2012, 2013} and costs of dollars per acre (#0x348) of {415.7, 423.4, 428.0, 435.1}, then
the coding is as follows:

32		0	0	0	4		0	0	0	2
0	0		101	0x03	0x48	18				
0x40	0x9F	0x68	0x00	0x00	0x00	0x00	0x00			
0x40	0x79	0xFB	0x33	0x33	0x33	0x33	0x33			
0x40	0x9F	0x6C	0x00	0x00	0x00	0x00	0x00			
0x40	0x7A	0x76	0x66	0x66	0x66	0x66	0x66			
0x40	0x9F	0x70	0x00	0x00	0x00	0x00	0x00			
0x40	0x7A	0xC0	0x00	0x00	0x00	0x00	0x00			
0x40	0x9F	0x74	0x00	0x00	0x00	0x00	0x00			
0x40	0x7A	0x91	0x99	0x99	0x99	0x99	0x9A			

2.2.9 Money units (#100) and Money units per quantity (unit types #101 - #106)
For MoneyPerUnit quantities such as MoneyPerArea, we need to send three bytes to indicate the
display unit: two for the Money, and one for the other unit. For Money per area, this means we first
send a Money constant followed by an Area constant. As an example, if we want to send the price of
land as € 2500 per hectare, transmitted as a double, this would be coded as:

 |26|101|0x03|0xD2|21|0x40|0xA3|0x88|0x00|0x00|0x00|0x00|0x00|

A double array of 200 cost elements in dollars (code 840 = 0x348) would be coded as:

 |28|0|0|0|200|100|0x03|0x48|...[200x8 bytes]...|

whereas a double array of 200 elements with dollars per liter would be coded as:

 |28|0|0|0|200|106|0x03|0x48|17|...[200x8 bytes]...|

as the Euro has code 978 = 0x3D2.

TU Delft | Message Structure v1.5 13

2.3 Sim0MQ Simulation Messages
In many cases, we want to distinguish between a definition of something, a subsequent change, and
the deletion or termination of something. As an example, a generated entity can report its initial
status, update state changes, and indicate when it leaves the simulation.

Furthermore, it is considered to be useful to know the message type, to avoid mistakes for parsing
the wrong message. Although it adds a bit to the message overhead, the benefits of not parsing and
interpreting a wrong message are clearly outweighing the transmission of a few bytes. In cases
where many short messages of a certain type are sent, untyped messages could be preferred over
typed simulation messages.

Finally, when multiple simulations are running in parallel, it is important to know for which running
simulation the message is intended. In case it gets delivered to the wrong simulation, it can be
discarded and potentially, the mistake can be logged.

The message structure of a typical typed Sim0MQ simulation message looks as follows:

Frame 0. Magic number = |9|0|0|0|5|S|I|M|#|#| where ## stands for the version number, e.g.,
01. The magic number is always coded as a UTF-8 String, so it always starts with a byte equal to 9.

Frame 1. Simulation run id. Simulation run ids can be provided in different types. Examples are two
64-bit longs indicating a UUID, or a String with a UUID number, a String with meaningful
identification, or a short or an int with a simulation run number. In order to check whether the right
information has been received, the id can be translated to a String and compared with an internal
string representation of the required simulation run id. The run id can be coded as UTF-8 or UTF-16.

Frame 2. Sender id. Sender ids can be provided in different types. Examples are two 64-bit longs
indicating a UUID, or a String with a UUID number, a String with meaningful identification, or a short
or an int with a sender id number. The sender id can be used to send back a message to the sender at
some later time. The sender id can be coded as UTF-8 or UTF-16.

Frame 3. Receiver id. Receiver ids can be provided in different types. Examples are two 64-bit longs
indicating a UUID, or a String with a UUID number, a String with meaningful identification, or a short
or an int with a receiver id number. The receiver id can be used to check whether the message is
meant for us, or should be discarded (or an error can be sent if we receive a message not meant for
us). The receiver id can be coded as UTF-8 or UTF-16.

Frame 4. Message type id. Message type ids can be defined per type of simulation, and can be
provided in different types. Examples are a String with a meaningful identification, or a short or an int
with a message type number. For interoperability between different types of simulation, a String id
with dot-notation (e.g., DSOL.1 for a simulator start message from DSOL or OTS.14 for a statistics
message from OpenTrafficSim) would be preferred. The message type id can be coded as UTF-8 or
UTF-16.

Frame 5. Unique message number. The unique message number will be sent as a long (64 bits), and
is meant to confirm with a callback that the message has been received correctly. The number is
unique for the sender, so not globally within the federation.

TU Delft | Message Structure v1.5 14

Frame 6. Message status id. Messages can be about something new (containing a definition that can
be quite long), an update (which is often just an id followed by a single number), and a deletion
(which is often just an id). The message status is is coded as a byte.

Frame 7. Number of fields. The number of fields in the payload is indicated to be able to check the
payload and to avoid reading past the end. The number of fields can be encoded using byte, short, or
int. A 32-bit int is the standard encoding.

Frame 8-n. Payload, where each field has a 1-byte prefix denoting the type of field.

2.3.1 Simulation run id
An example is to standardize on a String with meaningful information for the run id. The string
contains a run prefix, with experiment number and replication number separated by dot-notation.
This could be IDVV.14.2, indicating we run a simulation called 'IDVV', where the message is for
scenario (experiment) 14, replication 2. Clients would know whether they would be part of
experiment 14, replication 2, or not. A simple String comparison would yield whether they received a
message that is meant for the particular simulation.

2.3.2 Sender id
An example is to standardize on a String with meaningful information for the sender id. The string
contains a prefix identifying the type of component, e.g., "MM1" for an MM1 simulation model. A
number after that will indicate a unique number of the instance of the running model or component,
e.g. "MM1.4". When this model sends a message to the model controller, it will use "MM1.4" for this
field as a sender.

2.3.3 Receiver id
An example is to standardize on a String with meaningful information for the receiver id. The string
contains a prefix identifying the type of component, e.g., "MC" for the model controller. A number
after that will indicate a unique number of the instance of the running model or component, e.g.
"MC.1". When this model controller receives a message, it will test for this field as being "MC.1". We
could allow wildcards, where all model controllers would be informed with a message, using "MC.*"
to indicate that any model controller could receive this message, or even more extreme, "*" to
indicate any component could receive this message.

2.3.4 Message type id
Analogous with the simulation run is, the message type id contains a String id with dot-notation. The
first part of the message is the project the message belongs to (e.g., DSOL for the DSOL simulation
package, or OTS for OpenTrafficSim), followed by a message type number that is maintained within
that project (e.g., DSOL.1 for a simulator start message from DSOL or OTS.14 for a statistics message
from OpenTrafficSim).

2.3.5 Message status id
Three different status messages are defined: 1 for new, 2 for change, and 3 for delete. These
messages are coded as a byte.

2.3.6 Example
Suppose we have a simulation called IDVV.14.2 in which a message to change the (double) simulation
speed to the value 0.2 is sent, of which the message type is DSOL.3. The message is sent by "MC.1"

TU Delft | Message Structure v1.5 15

and received by "MM1.4". Suppose the message number is 124. Then the message looks as follows
(note that the double representation of 0.2 is 0x3FC999999999999A):

9	0	0	0	5	S	I	M	0	1	9	0	0	0	9	I	D	V	V	.	1	4	.	2						
9	0	0	0	4	M	C	.	1	9	0	0	0	5	M	M	1	.	4	9	0	0	0	6	D	S	O	L	.	3
3	0	0	0	0	0	0	0	124	0	2	1	0	1																
5	0x3F	0xC9	0x99	0x99	0x99	0x99	0x99	0x9A																					

TU Delft | Sim0MQ Components v1.5 16

3 Sim0MQ Components
Several components have been created to help in easy setting up of simulations that use the
Sim0MQ message bus. Examples are a Federation Manager (aka Model Controller) and a Federate
Starter. A Federate Starter is a lightweight executable to start a federate on a local node as a
(sub)process. The Federate Starter listens to external messages, e.g. from a Federation Manager. The
Federation Manager sends messages to Federate Starters to start model components, loggers, data
collectors, etc. It can start a federation as soon as all required model components are on-line. It
might kill model components that take too long to finish.

3.1 Federate Starter
A Federate Starter is a small program or daemon that listens on a certain port and that can start
federates such as models, loggers, data providers and other federation components on a local
machine. A Federation Manager (e.g., a model controller or a workbench) sends a FederateStart

message to the Federate Starter, which starts the federate and provides it with enough information
so it can report back to the federate starter that the start has succeeded. After that, the Federate
Starter reports back to the Federation Manager that the federate is on-line with a FederateStarted

message. After that, the Federate Starter resumes listening on the port for new messages to start a
federate. See Figure 1 for more details.

Starting a program as a subprocess is sometimes done by forking. The disadvantage of forking is that
the newly started program 'inherits' the state of the federate starter. In this case, we want to start a
program fresh, that is independent of the parent process. In other words, if the parent process (the
Federate Starter) dies, the federates and models that have been started by it should keep working. In
Java 1.7 or higher, this can be achieved by a ProcessBuilder class that takes care of setting the
working directory, setting the environment variables, redirecting the standard i/o (stdin, stdout,
stderr) of the program to be started, and starts the program. It only takes a few lines of coding.

One of the important things to take into account is that all arguments to the program need to be split
as separate arguments, so "java -jar test.jar" should be split into 3 arguments. Another point of
attention is the redirection of input and output. When it is not redirected, it might stay in a buffer
within the program that consumes memory until it is full or until memory runs out. Therefore,
adequate handling of stdout and stderr is needed.

3.2 Federation Manager
The Federation Manager is responsible for the management of the execution of one or more models.
It asks the Federate Starter to start models on its behalf on other servers (or could do so itself if all
models run on the same computer). An extensive set of messages has been devised to communicate
with one or more Federate Starters on multiple computers to start models, and to communicate with
the models to set the parameters and experimental conditions, and to gather the statistics
afterward. Multiple Federation Managers can work in parallel and communicate with their own set
of models. Figure 1 shows the basic communication pattern, and Figure 2 shows a simple
implementation of the connections between the models.

TU Delft | Sim0MQ Components v1.5 17

Federate
Manager

Model
Federate
Starter

FM.1 StartFederate

Initiate the model (with the port number)

FM.2 SimRunControl

MC.2 AckNak

FS.2 FederateStarted

FM.3 SetParameter

MC.2 AckNak

FM.4 SimStart

MC.2 AckNak

loop

loop

optional

FM.5 RequestStatus

MC.1 Status

loop
Status can be e.g.,
“started”, “running”,
“ended”, “error”

FM.6 RequestStatisticsloop

MC.3 Statistics

FM.7 SimReset

MC.2 AckNak

FM.8 KillFederate

FS.4 FederateKilled

FS.3 KillModel

FS.1 RequestStatus

MC.1 Status

loop

Status can be e.g.,
“started”, “running”,
“ended”, “error”

loop optional

MC.4 StatisticsError

Figure 1. Federate Starter and Model Run control flow

TU Delft | Sim0MQ Components v1.5 18

Federate Manager
(EMA WB)

Client - REQ

Model

Server - REP

Federate Starter
Client - REQ

Federate Starter
Server - REP

Port : xxxx

Port : yyyy

Figure 2: ZeroMQ Simple REQ-REP Messaging Pattern between Federation Manager, Model and Federate Starter

3.3 REQ-ROUTER pattern
In Figure 2, it is shown that both the Federation Manager and the Federate Starter communicate
with the Model. This cannot be done with a REQ-REP framework, as REQ-REP is a 1:1 connection.
Instead, the model can implement a ROUTER socket, which allows multiple connections. The ROUTER
socket is a bit more complicated, however. The following changes have to be implemented in the
model:

• Each client should have a unique identity. This is done with the socket.setIdentity(String
identity) method in the Federation Manager and the Federate Starter, right after the socket
has been created, and before binding to a port. In the reference implementation, a unique
UUID is generated for each identity.

• The model should use the identity to talk back to the clients, so it will use the right channel.
• The model is a bit more complicated in terms of communication, as it explicitly receives the

identity and the envelope separator (the REP receives these fields as well, but strips the
identity and separator from the message so the Model does not have to act on it).

The communication takes place as follows:

 Model (ROUTER) FS/FM Client (REQ)

 socket(ZMQ.ROUTER) socket(ZMQ.REQ)
 setIdentity(String uniqueId)
 recv(identity) <----- sendMessage
 recv(delimiter)
 recv(message)
 [process the data]
 sendMore(identity)
 sendMore(delimiter)
 send(reply_message) -----> recv

TU Delft | Sim0MQ Components v1.5 19

The connections with the REQ-ROUTER pattern are given in Figure 3.

Figure 3. ZeroMQ REQ-ROUTER Messaging Pattern between Federation Manager, Model and Federate Starter

Federation Manager
(e.g., EMA WB)

Client - REQ Model

ROUTER

Federate Starter
Client - REQ

Federate Starter
ROUTER

Port : xxxx

Port : yyy1

Federation Manager
(e.g., EMA WB)

Client - REQ

Federation Manager
(e.g., EMA WB)

Client - REQ
Model

ROUTER

Model

ROUTER

Port : yyy2

Port : yyy3

TU Delft | Messages v1.5 20

4 Messages

4.1 StartFederate (message type id = FM.1)

NEW
Variable # Type Comments
instanceId 8 String(9) Id to identify the callback to know which model instance

has been started, e.g. "IDVV.14". The model instance
will use this as its sender id. The string cannot be empty.

softwareCode 9 String(9) Code for the software to run, will be looked up in a table
on the local computer to determine the path to start the
software on that computer. Example: "java". The string
cannot be empty.

argsBefore 10 String(9) Arguments that the software needs, before the model
file path and name; e.g. "–Xmx2G -jar" in case of a Java
model. This String can be empty (0 characters).

modelPath 11 String(9) The actual path on the target computer where the
model resides, including the model that needs to be
run. This String cannot be empty.

argsAfter 12 String(9) Arguments that the software or the model needs, after
the model file path and name; e.g. arguments for the
model itself to run like a data file or a data location .
This String can be empty (0 characters), but usually we
would want to send the port number(s) or a location
where the model can find it as well as the name under
which the model was registered. If the port number
needs to be inserted in the args, use %p for the port
number.

workingDirectory 13 String(9) Full path on the target computer that will be used as the
working directory. Some files may be temporarily stored
there. If the working directory does not exist yet, it will
be created. The string cannot be empty.

redirectStdin 14 String(9) Place to get user input from in case a model asks for it
(it shouldn't, by the way). The string can be empty (0
characters).

redirectStdout 15 String(9) Place to send the output to that the model normally
displays on the console. If this is not redirected, the
memory buffer for the stdout might get full, and the
model might stop as a result. On Linux systems, this
often redirected to /dev/null. On Windows systems, this
can e.g., be redirected to a file "out.txt" in the current
working directory. For now, it has to be a path name
(including /dev/null as being acceptable). If no full path
is given, the filename is relative to the working
directory. The string cannot be empty.

redirectStderr 16 String(9) Place to send the error messages to that the model
normally displays on the console. If this is not
redirected, the memory buffer for the stderr might get
full, and the model might stop as a result. On Linux
systems, this often redirected to /dev/null. On Windows
systems, this can e.g., be redirected to a file "err.txt" in
the current working directory. For now, it has to be a
path name (including /dev/null as being acceptable). If
no full path is given, the filename is relative to the
working directory. The string cannot be empty.

TU Delft | Messages v1.5 21

deleteWorkingDirectory 17 Boolean(6) Whether to delete the working directory after the run of
the model or not.

deleteStdout 18 Boolean(6) Whether to delete the redirected stdout after running
or not (in case it is stored in a different place than the
working directory)

deleteStderr 19 Boolean(6) Whether to delete the redirected stderr after running or
not (in case it is stored in a different place than the
working directory)

CHANGE
Not sent

DELETE
Not sent

A number of standard types of software to look up and their respective codes are:

• java for the latest Java version
• java7, java8, java7+, etc. for a specific version of Java
• python for the latest python version
• python2, python3, python2+, etc. for a specific version of Python
• if necessary, special Strings could be created for 32-bit and 64-bit versions of the software.

Preferably, "x64" is added at the end of the String to denote a 64-bit version
• if a specific version is needed of software, either extra entries can be created, or the actual

path on the computer can be specified instead of the type code.

4.1.1 Federate Starter’s instantiation of a model:
When it receives a StartFederate message, the Federate starter creates a process to run the model
with the specifications given in the message, such as the working directory, model file, output and
error files etc. Creating a model instance in this way also requires a port number, to which the model
instance should bind as a ROUTER. This port number is assigned by the Federate Starter. Federate
Starter picks an available port from a range of ports on the machine it is running (which must be
open to outside connection) and gives this to the model as an argument. If the binding is not
successful, the Federate Starter creates generates a new port number.

4.2 RequestStatus (message type id = FS.1)
(The id can be different, because the very same message is sent by the Federation Manager, too.)

This message is sent by the Federate Starter to the Model until a “started” response is received from
the Model. Since the message type id clarifies the function of this message and no information
exchange is necessary, the payload field can be empty (number of fields = 0).

Message status id : NEW

Variable Type Comments

4.3 Status (message type id = MC.1)
The Model sends this message as a response to RequestStatus messages sent by the Federate Starter
or the Federation Manager.

TU Delft | Messages v1.5 22

 NEW
Variable Type Comments
uniqueId Long(3) The unique message id (Frame 5) of the sender for

which this is the reply.
status String(9) A string that refers to the model status. Four options:

“started”, “running”, “ended”, “error”.
error String(9) Optional. If there is an error, the error message is sent

as well. Otherwise this field is an empty string.

4.4 FederateStarted (message type id = FS.2)
Message sent by the Federate Starter to the Federation Manager in response to message FM.1.

NEW
Variable Type Comments
instanceId String(9) The sender id of the model that was started or had an

error while starting. This is exactly the same as the
instanceId sent by the Federation Manager in the Start
Federate message.

status String(9) A string that refers to the model status. Four options:
“started”, “running”, “ended”, “error”.

modelPortNumber short(1) Port number of the model, so the FederateManager can
connect to the model on this port for further simulation
messages.

error String(9) Optional. If there is an error, the error message is sent
as well. Otherwise this field is an empty string.

4.5 SimRunControl (message type id = FM.2)
Message sent by the Federation Manager to the Model to initiate a simulation.

NEW
Variable Type Comments
runTime Any numeric type

(1-5) or Float or
Double with Unit
(25, 26) of type
Duration (25)

Duration of the run of a single replication, including the
warmup time, if present.

warmupTime Any numeric type
(1-5) or Float or
Double with Unit
(25, 26) of type
Duration (25)

Warmup time of the model in time units that the model
uses.

offsetTime Any numeric type
(1-5) or Float or
Double with Unit
(25, 26) of type
Time (26)

Offset of the time (e.g., a model time of 0 is the year
2016, or 1-1-2015).

speed Double(5) Speed as the number of times real-time the model
should run; Double.INFINITY means as fast as possible.

noReplications Integer(2) Number of replications for stochastic uncertainties in
the model.

noRandomStreams Integer(2) Number of random streams that follow
streamId.1 basic type

(1,2,3,9)
Identifier of random stream 1

TU Delft | Messages v1.5 23

seed.1 Long(3) Seed for random stream 1
...
streamId.n basic type

(1,2,3,9)
Identifier of random stream n

seed.n Long(3) Seed for random stream n

4.6 AckNak (message type id = MC.2)
Message sent by the Model to acknowledge the reception and implementation of a message sent by
the Federation Manager.

This type of message is sent in response to many messages of the FM. That could create confusion if
there were multiple model instances, and one sending an acknowledgement e.g.for SimRunControl,
the other for SetParameter. However, since a different port number will be assigned to each model
and these acknowledgment messages will be sent only after a command, and include the uniqueId of
the request, such a confusion is not expected.

NEW
Variable Type Comments
uniqueId Long(3) The unique message id (Frame 5) of the sender for

which this is the reply.
status Boolean(6) A boolean that indicates whether the command sent by

the FM has been successfully implemented, e.g.
whether the run control parameters are set successfully.

error String(9) If ‘status’ is False, an error message that indicates which
parameter could not be set and why. Otherwise, an
empty string.

4.7 SetParameter (message type id = FM.3)
Message sent by the FederateManager to the Model for setting the parameter values. Parameters
are set one by one (but can be a Vector or Matrix).

NEW
Variable Type Comments
parameterName String(9) Name of the parameter as it is in the model.
parameterValue any type (0-32) Value of the parameter assigned for a specific

simulation. The type depends on the parameter. It
could, e.g., be long or double. 1

4.8 SimStart (message type id = FM.4)
Message sent by the Federation Manager to start the simulation.

NEW
Variable Type Comments

1 The EMA workbench knows beforehand the type of these parameters, samples accordingly and sends the
sampled values. However, since all integer types are ‘long’ by default and all floats are ‘double’, they will be
sent in that format. Message decoding and encoding handles this type specification.

TU Delft | Messages v1.5 24

4.9 RequestStatus (message type id = FM.5)
Message sent by the Federation Manager to enquire the status of the simulation. The answer to this
message is MC.1 "Status" (discussed above).

Since the message type id clarifies the function of this message and no information exchange is
necessary, the payload field can be empty.

NEW
Variable Type Comments

4.10 RequestStatistics (message type id = FM.6)
Message sent by the Federation Manager to collect the output.

NEW
Variable Type Comments
variableName String(9) The name of the output variable whose value is

requested. That should match with the name in the
model. For a tallied variable, several statistics are
possible, e.g., average, variance, minimum, maximum,
time series, etc. The name should clearly indicate what
the Model Controller expects and what the model
should produce.

4.11 Statistics (message type id = MC.3)
Message sent by the Model to give the model output, if there is output generated for the specified
variable.

NEW
Variable Type Comments
variableName String(9) The name of the output variable whose value is

requested. That should match with the name in the
model.

variableValue Any type (0-32) If variableType is scalar, the data type is e.g., an integer,
float etc. and the value generated in the model.
If variableType is timeseries, the data type is an ‘array’
(type 11-16 or 27/28) or a time series (type 31/32).

4.12 StatisticsError (message type id = MC.4)
Message sent by the Model to indicate that there is an error with the output. MC.3 and MC.4 are
alternative to each other.

NEW
Variable Type Comments
variableName String(9) The name of the output variable whose value is

requested. That should match with the name in the
model.

error String(9) Three types of error can occur:
- If the variableName does not exist in the model,

error = “name”
- If the simulation did not generate a value for this

variable, e.g. NaN or division by zerro,
error= “novalue”

TU Delft | Messages v1.5 25

4.13 SimReset (message type id = FM.7)
CHANGE

Variable Type Comments

4.14 KillFederate (message type id = FM.8)
Since the items to be deleted were specified in the StartFederate message, no input is required. The
payload can be an empty string.

NEW
Variable Type Comments
instanceId String(9) Id to identify the model instance that has to be killed,

e.g. "IDVV.14".

4.15 KillAll (message type id = FM.9)
The message sent by the Federation Manager to the Federate Starter to kill all running model
instances. There is no payload.

NEW
Variable Type Comments

4.16 KillModel (message type id = FS.3)
The message is sent by the federate starter to a model instance.

NEW
Variable Type Comments

4.17 FederateKilled (message type id = FS.4)
NEW

Variable Type Comments
instanceId String(9) Id to identify the model instance that was killed, e.g.

"IDVV.14".
status Boolean(6) A boolean that indicates whether the federate has been

successfully terminated.
error String(9) If ‘status’ is False, an error message that specifies the

problem. Otherwise, an empty string.

4.18 FederatesKilled (message type id = FS.5)
NEW

Variable Type Comments
status Boolean(6) A boolean that indicates whether all federates has been

successfully terminated.
error String(9) If ‘status’ is False, an error message that specifies the

problem. Otherwise, an empty string.

TU Delft | Example: MM1-model with EMA workbench v1.5 26

5 Example: MM1-model with EMA workbench
Magic number is SIM01.

Federation Manager uses id EMA.

Federate Starter id is FS, listens on port 5555.

FM.1, StartFederate: java-jar mm1.jar MM1.1 5556
MM1 listens on port 5556, I/O gets redirected to out.txt, err.txt, and will be deleted.
Model id will be MM1.# where # indicates the instance number.
Each model instance has its own port number.

FM.2 RunControl: run time: 100(double), warmup time 0(double), speed infinite(double), start time
0(double), no of replications 1(integer), 1 seed for the model, name "default", to be set by EMA.

FM.3 parameterr: "iat", double, value, standard value is 1.0.
"servicetime", double, standard value is 0.8.

FM.6 RequestStatistics: "dN", "qN", "uN" are the main statistics. Of each you can ask:

• .average
• .stdev
• .variance
• .sum
• .min
• .max
• .halfwidth(alpha) where alpha is a real number like 0.05 for a 95% confidence interval
• .n

TU Delft | Notes and possible extensions v1.5 27

6 Notes and possible extensions

6.1 Notes

6.2 Possible extensions

TU Delft | Appendix A. Unit display type coding v1.5 28

Appendix A. Unit display type coding

0. Dimensionless
The Dimensionless unit does not have any display codes, except the default one, indicated with code
number 0.

1. Acceleration
0 METER_PER_SECOND_2 (SI) m/s2
1 KM_PER_HOUR_2 km/h2

2 INCH_PER_SECOND_2 in/s2
3 FOOT_PER_SECOND_2 ft/s2
4 MILE_PER_HOUR_2 mi/h2
5 MILE_PER_HOUR_PER_SECOND mi/h/s
6 KNOT_PER_SECOND kt/s
7 GAL gal
8 STANDARD_GRAVITY g

2. AngleSolid
0 STERADIAN (SI) sr
1 SQUARE_DEGREE sq.deg

3. Angle
0 RADIAN (SI) rad
1 ARCMINUTE arcmin / '
2 ARCSECOND arcsec / "
3 CENTESIMAL_ARCMINUTE centesimal_arcmin
4 CENTESIMAL_ARCSECOND centesimal_arcsec
5 DEGREE deg
6 GRAD grad

4. Direction
0 NORTH_RADIAN (BASE) rad(N)
1 NORTH_DEGREE deg(N)
2 EAST_RADIAN rad(E)
3 EAST_DEGREE deg(E)

TU Delft | Appendix A. Unit display type coding v1.5 29

5. Area
0 SQUARE_METER (SI) m2

1 SQUARE_ATTOMETER am2
2 SQUARE_FEMTOMETER fm2
3 SQUARE_PICOMETER pm2
4 SQUARE_NANOMETER nm2
5 SQUARE_MICROMETER μm2
6 SQUARE_MILLIMETER mm2

7 SQUARE_CENTIMETER cm2

8 SQUARE_DECIMETER dm2
9 SQUARE_DEKAMETER dam2
10 SQUARE_HECTOMETER hm2
11 SQUARE_KILOMETER km2
12 SQUARE_MEGAMETER Mm2
13 SQUARE_INCH in2

14 SQUARE_FOOT ft2

15 SQUARE_YARD yd2
16 SQUARE_MILE mi2

17 SQUARE_NAUTICAL_MILE NM2
18 ACRE acre
19 ARE a
20 CENTIARE ca
21 HECTARE ha

6. Density
0 KG_PER_METER_3 (SI) kg/m3

1 GRAM_PER_CENTIMETER_3 g/cm3

7. ElectricalCharge
0 COULOMB C
1 PICOCOULOMB pC
2 NANOCOULOMB nC
3 MICROCOULOMB μC
4 MILLICOULOMB mC
5 ABCOULOMB abC
6 ATOMIC_UNIT au
7 EMU emu
8 ESU esu
9 FARADAY F
10 FRANKLIN Fr
11 STATCOULOMB statC
12 MILLIAMPERE_HOUR mAh
13 AMPERE_HOUR Ah
14 KILOAMPERE_HOUR kAh
15 MEGAAMPERE_HOUR MAh
16 MILLIAMPERE_SECOND mAs

TU Delft | Appendix A. Unit display type coding v1.5 30

8. ElectricalCurrent
0 AMPERE (SI) A

1 NANOAMPERE nA
2 MICROAMPERE μA
3 MILLIAMPERE mA

4 KILOAMPERE kA
5 MEGAAMPERE MA
6 ABAMPERE abA
7 STATAMPERE statA

9. ElectricalPotential
0 VOLT (SI) V

1 NANOVOLT nV
2 MICROVOLT μV
3 MILLIVOLT mV

4 KILOVOLT kV
5 MEGAVOLT MV
6 GIGAVOLT GV
7 ABVOLT abV
8 STATVOLT statV

10. ElectricalResistance
0 OHM (SI) Ω

1 NANOOHM nΩ
2 MICROOHM μΩ
3 MILLIOHM mΩ

4 KILOOHM kΩ
5 MEGAOHM MΩ
6 GIGAOHM GΩ
7 ABOHM abΩ
8 STATOHM statΩ

11. Energy
0 JOULE (SI) J
1 PICOJOULE pJ
2 NANOJOULE mJ
3 MICROJOULE μJ
4 MILLIJOULE mJ

5 KILOJOULE kJ
6 MEGAJOULE MJ
7 GIGAJOULE GJ
8 TERAJOULE TJ
9 PETAJOULE PJ
10 ELECTRONVOLT eV
11 MICROELECTRONVOLT μeV
12 MILLIELECTRONVOLT meV

13 KILOELECTRONVOLT keV

TU Delft | Appendix A. Unit display type coding v1.5 31

14 MEGAELECTRONVOLT MeV
15 GIGAELECTRONVOLT GeV
16 TERAELECTRONVOLT TeV
17 PETAELECTRONVOLT PeV
18 EXAELECTRONVOLT EeV
19 WATT_HOUR Wh
20 FEMTOWATT_HOUR fWh
21 PICOWATT_HOUR pWh
22 NANOWATT_HOUR mWh
23 MICROWATT_HOUR μWh
24 MILLIWATT_HOUR mWh

25 KILOWATT_HOUR kWh
26 MEGAWATT_HOUR MWh
27 GIGAWATT_HOUR GWh
28 TERAWATT_HOUR TWh
29 PETAWATT_HOUR PWh
30 CALORIE cal
31 KILOCALORIE kcal
32 CALORIE_IT cal(IT)
33 INCH_POUND_FORCE in lbf
34 FOOT_POUND_FORCE ft lbf
35 ERG erg
36 BTU_ISO BTU(ISO)
37 BTU_IT BTU(IT)
38 STHENE_METER sth.m

12. FlowMass
0 KG_PER_SECOND (SI) kg/s

1 POUND_PER_SECOND lb/s

13. FlowVolume
0 CUBIC_METER_PER_SECOND (SI) m3/s
1 CUBIC_METER_PER_MINUTE m3/min
2 CUBIC_METER_PER_HOUR m3/h
3 CUBIC_METER_PER_DAY m3/day
4 CUBIC_INCH_PER_SECOND in3/s

5 CUBIC_INCH_PER_MINUTE in3/min
6 CUBIC_FEET_PER_SECOND ft3/s
7 CUBIC_FEET_PER_MINUTE ft3/min
8 GALLON_PER_SECOND gal/s
9 GALLON_PER_MINUTE gal/min
10 GALLON_PER_HOUR gal/h
11 GALLON_PER_DAY gal/day
12 LITER_PER_SECOND l/s

13 LITER_PER_MINUTE l/min
14 LITER_PER_HOUR l/h
15 LITER_PER_DAY l/day

TU Delft | Appendix A. Unit display type coding v1.5 32

14. Force
0 NEWTON (SI) N
1 KILOGRAM_FORCE kgf
2 OUNCE_FORCE ozf
3 POUND_FORCE lbf
4 TON_FORCE tnf
5 DYNE dyne
6 STHENE sth

15. Frequency
0 HERTZ (SI) Hz
1 KILOHERTZ kHz
2 MEGAHERTZ MHz
3 GIGAHERTZ GHz
4 TERAHERTZ THz
5 PER_SECOND 1/s
6 PER_ATTOSECOND 1/as
7 PER_FEMTOSECOND 1/fs
8 PER_PICOSECOND 1/ps
9 PER_NANOSECOND 1/ns
10 PER_MICROSECOND 1/μs
11 PER_MILLISECOND 1/ms

12 PER_MINUTE 1/min
13 PER_HOUR 1/hr
14 PER_DAY 1/day
15 PER_WEEK 1/wk
16 RPM rpm

16. Length
0 METER (SI) m

1 ATTOMETER am
2 FEMTOMETER fm
3 PICOMETER pm
4 NANOMETER nm
5 MICROMETER μm
6 MILLIMETER mm

7 CENTIMETER cm

8 DECIMETER dm
9 DEKAMETER dam
10 HECTOMETER hm
11 KILOMETER km
12 MEGAMETER Mm
13 INCH in

14 FOOT ft

15 YARD yd
16 MILE mi

17 NAUTICAL_MILE NM
18 ASTRONOMICAL_UNIT au

TU Delft | Appendix A. Unit display type coding v1.5 33

19 PARSEC pc
20 LIGHTYEAR ly
21 ANGSTROM Å

17. Position
0 METER (BASE) m

1 ATTOMETER am
2 FEMTOMETER fm
3 PICOMETER pm
4 NANOMETER nm
5 MICROMETER μm
6 MILLIMETER mm

7 CENTIMETER cm

8 DECIMETER dm
9 DEKAMETER dam
10 HECTOMETER hm
11 KILOMETER km
12 MEGAMETER Mm
13 INCH in

14 FOOT ft

15 YARD yd
16 MILE mi

17 NAUTICAL_MILE NM
18 ASTRONOMICAL_UNIT au
19 PARSEC pc
20 LIGHT_YEAR ly
21 ANGSTROM Å

18. LinearDensity
0 PER_METER (SI) 1/m

1 PER_ATTOMETER 1/am
2 PER_FEMTOMETER 1/fm
3 PER_PICOMETER 1/pm
4 PER_NANOMETER 1/nm
5 PER_MICROMETER 1/μm
6 PER_MILLIMETER 1/mm

7 PER_CENTIMETER 1/cm

8 PER_DECIMETER 1/dm
9 PER_DEKAMETER 1/dam
10 PER_HECTOMETER 1/hm
11 PER_KILOMETER 1/km
12 PER_MEGAMETER 1/Mm
13 PER_INCH 1/in

14 PER_FOOT 1/ft

15 PER_YARD 1/yd
16 PER_MILE 1/mi

17 PER_NAUTICAL_MILE 1/NM
18 PER_ASTRONOMICAL_UNIT 1/au

TU Delft | Appendix A. Unit display type coding v1.5 34

19 PER_PARSEC 1/pc
20 PER_LIGHT_YEAR 1/ly
21 PER_ANGSTROM 1/Å

19. Mass
0 KILOGRAM (SI) kg
1 FEMTOGRAM fg
2 PICOGRAM pg
3 NANOGRAM mg
4 MICROGRAM μg
5 MILLIGRAM mg

6 GRAM kg
7 MEGAGRAM Mg
8 GIGAGRAM Gg
9 TERAGRAM Tg
10 PETAGRAM Pg
11 MICROELECTRONVOLT μeV
12 MILLIELECTRONVOLT meV

13 KILOELECTRONVOLT keV
14 MEGAELECTRONVOLT MeV
15 GIGAELECTRONVOLT GeV
16 TERAELECTRONVOLT TeV
17 PETAELECTRONVOLT PeV
18 EXAELECTRONVOLT EeV
19 OUNCE oz
20 POUND lb
21 DALTON Da
22 TON_LONG ton (long)
23 TON_SHORT ton (short)
24 TONNE tonne

20. Power
0 WATT (SI) W
1 FEMTOWATT fW
2 PICOWATT pW
3 NANOWATT mW
4 MICROWATT μW
5 MILLIWATT mW

6 KILOWATT kW
7 MEGAWATT MW
8 GIGAWATT GW
9 TERAWATT TW
10 PETAWATT PW
11 ERG_PER_SECOND erg/s
12 FOOT_POUND_FORCE_PER_SECOND ft.lbf/s
13 FOOT_POUND_FORCE_PER_MINUTE ft.lbf/min
14 FOOT_POUND_FORCE_PER_HOUR ft.lbf/h
15 HORSEPOWER_METRIC hp / PS

TU Delft | Appendix A. Unit display type coding v1.5 35

16 STHENE_METER_PER_SECOND sth/s

21. Pressure
0 PASCAL (SI) Pa
1 HECTOPASCAL hPa
2 KILOPASCAL kPa
3 ATMOSPHERE_STANDARD atm
4 ATMOSPHERE_TECHNICAL at
5 MILLIBAR mbar
6 BAR bar
7 BARYE Ba
8 MILLIMETER_MERCURY mmHg
9 CENTIMETER_MERCURY cmHg
10 INCH_MERCURY inHg
11 FOOT_MERCURY ftHg
12 KGF_PER_SQUARE_MM kgf/mm2

13 PIEZE pz
14 POUND_PER_SQUARE_INCH lb/in2

15 POUND_PER_SQUARE_FOOT lb/ft2

16 TORR torr

22. Speed
0 METER_PER_SECOND (SI) m/s
1 METER_PER_HOUR m/h
2 KM_PER_SECOND km/s

3 KM_PER_HOUR km/h

4 INCH_PER_SECOND in/s
5 INCH_PER_MINUTE in/min
6 INCH_PER_HOUR in/h
7 FOOT_PER_SECOND ft/s
8 FOOT_PER_MINUTE ft/min
9 FOOT_PER_HOUR ft/h
10 MILE_PER_SECOND mi/s
11 MILE_PER_MINUTE mi/min
12 MILE_PER_HOUR mi/h
13 KNOT kt

23. Temperature
0 KELVIN (SI) K
1 DEGREE_CELSIUS OC
2 DEGREE_FAHRENHEIT OF

3 DEGREE_RANKINE OR

4 DEGREE_REAUMUR ORé

TU Delft | Appendix A. Unit display type coding v1.5 36

24. AbsoluteTemperature
0 KELVIN (SI) K
1 DEGREE_CELSIUS OC
2 DEGREE_FAHRENHEIT OF

3 DEGREE_RANKINE OR

4 DEGREE_REAUMUR ORé

25. Duration
0 SECOND (SI) s
1 ATTOSECOND as
2 FEMTOSECOND fs
3 PICOSECOND ps
4 NANOSECOND ns
5 MICROSECOND μs
6 MILLISECOND ms

7 MINUTE min
8 HOUR hr
9 DAY day
10 WEEK wk

26. Time
0 BASE_SECOND s
1 BASE_MICROSECOND μs
2 BASE_MILLISECOND ms

3 BASE_MINUTE min
4 BASE_HOUR hr
5 BASE_DAY day
6 BASE_WEEK wk
7 EPOCH_SECOND (since 1-1-70) s (POSIX)
8 EPOCH_MICROSECOND (since 1-1-70) μs (POSIX)
9 EPOCH_MILLISECOND (since 1-1-70) ms (POSIX)

10 EPOCH_MINUTE (since 1-1-70) min (POSIX)
11 EPOCH_HOUR (since 1-1-70) hr (POSIX)
12 EPOCH_DAY (since 1-1-70) day (POSIX)
13 EPOCH_WEEK (since 1-1-70) wk (POSIX)
14 YEAR1_SECOND (since 1-1-0001) s(1-1-0001)
15 J2000_SECOND (since 1-1-2000, 12:00) s(1-1-2000)

27. Torque
0 NEWTON_METER (SI) Nm

1 POUND_FOOT lb.ft
2 POUND_INCH lb.in
3 METER_KILOGRAM_FORCE m.kgf

TU Delft | Appendix A. Unit display type coding v1.5 37

28. Volume
0 CUBIC_METER (SI) m3

1 CUBIC_ATTOMETER am3
2 CUBIC_FEMTOMETER fm3
3 CUBIC_PICOMETER pm3
4 CUBIC_NANOMETER nm3
5 CUBIC_MICROMETER μm3
6 CUBIC_MILLIMETER mm3

7 CUBIC_CENTIMETER cm3

8 CUBIC_DECIMETER dm3
9 CUBIC_DEKAMETER dam3
10 CUBIC_HECTOMETER hm3
11 CUBIC_KILOMETER km3
12 CUBIC_MEGAMETER Mm3
13 CUBIC_INCH in3

14 CUBIC_FOOT ft3

15 CUBIC_YARD yd3
16 CUBIC_MILE mi3

17 LITER l
18 GALLON_IMP gal (imp)
19 GALLON_US_FLUID gal (US)
20 OUNCE_IMP_FLUID oz (imp)
21 OUNCE_US_FLUID oz (US)
22 PINT_IMP pt (imp)
23 PINT_US_FLUID pt (US)
24 QUART_IMP qt (imp)
25 QUART_US_FLUID qt (US)
26 CUBIC_PARSEC pc3
27 CUBIC_LIGHT_YEAR ly3

100. Money
Money is in essence dimensionless. The following currencies are supported, according to ISO 42172:

CODE ABBREV. NAME
784 AED United Arab Emirates dirham
971 AFN Afghan afghani
008 ALL Albanian lek
051 AMD Armenian dram
532 ANG Netherlands Antillean guilder
973 AOA Angolan kwanza
032 ARS Argentine peso
036 AUD Australian dollar
533 AWG Aruban florin
944 AZN Azerbaijani manat
977 BAM Bosnia and Herzegovina convertible mark
052 BBD Barbados dollar
050 BDT Bangladeshi taka
975 BGN Bulgarian lev

2 https://en.wikipedia.org/wiki/ISO_4217

TU Delft | Appendix A. Unit display type coding v1.5 38

CODE ABBREV. NAME
048 BHD Bahraini dinar
108 BIF Burundian franc
060 BMD Bermudian dollar
096 BND Brunei dollar
068 BOB Boliviano
984 BOV Bolivian Mvdol (funds code)
986 BRL Brazilian real
044 BSD Bahamian dollar
064 BTN Bhutanese ngultrum
072 BWP Botswana pula
933 BYN New Belarusian ruble
974 BYR Belarusian ruble
084 BZD Belize dollar
124 CAD Canadian dollar
976 CDF Congolese franc
947 CHE WIR Euro (complementary currency)
756 CHF Swiss franc
948 CHW WIR Franc (complementary currency)
990 CLF Unidad de Fomento (funds code)
152 CLP Chilean peso
156 CNY Chinese yuan
170 COP Colombian peso
970 COU Unidad de Valor Real (UVR) (funds code)
188 CRC Costa Rican colon
931 CUC Cuban convertible peso
192 CUP Cuban peso
132 CVE Cape Verde escudo
203 CZK Czech koruna
262 DJF Djiboutian franc
208 DKK Danish krone
214 DOP Dominican peso
012 DZD Algerian dinar
818 EGP Egyptian pound
232 ERN Eritrean nakfa
230 ETB Ethiopian birr
978 EUR Euro
242 FJD Fiji dollar
238 FKP Falkland Islands pound
826 GBP Pound sterling
981 GEL Georgian lari
936 GHS Ghanaian cedi
292 GIP Gibraltar pound
270 GMD Gambian dalasi
324 GNF Guinean franc
320 GTQ Guatemalan quetzal
328 GYD Guyanese dollar
344 HKD Hong Kong dollar
340 HNL Honduran lempira
191 HRK Croatian kuna

TU Delft | Appendix A. Unit display type coding v1.5 39

CODE ABBREV. NAME
332 HTG Haitian gourde
348 HUF Hungarian forint
360 IDR Indonesian rupiah
376 ILS Israeli new shekel
356 INR Indian rupee
368 IQD Iraqi dinar
364 IRR Iranian rial
352 ISK Icelandic króna
388 JMD Jamaican dollar
400 JOD Jordanian dinar
392 JPY Japanese yen
404 KES Kenyan shilling
417 KGS Kyrgyzstani som
116 KHR Cambodian riel
174 KMF Comoro franc
408 KPW North Korean won
410 KRW South Korean won
414 KWD Kuwaiti dinar
136 KYD Cayman Islands dollar
398 KZT Kazakhstani tenge
418 LAK Lao kip
422 LBP Lebanese pound
144 LKR Sri Lankan rupee
430 LRD Liberian dollar
426 LSL Lesotho loti
434 LYD Libyan dinar
504 MAD Moroccan dirham
498 MDL Moldovan leu
969 MGA Malagasy ariary
807 MKD Macedonian denar
104 MMK Myanmar kyat
496 MNT Mongolian tögrög
446 MOP Macanese pataca
478 MRO Mauritanian ouguiya
480 MUR Mauritian rupee
462 MVR Maldivian rufiyaa
454 MWK Malawian kwacha
484 MXN Mexican peso
979 MXV Mexican Unidad de Inversion (UDI) (funds code)
458 MYR Malaysian ringgit
943 MZN Mozambican metical
516 NAD Namibian dollar
566 NGN Nigerian naira
558 NIO Nicaraguan córdoba
578 NOK Norwegian krone
524 NPR Nepalese rupee
554 NZD New Zealand dollar
512 OMR Omani rial
590 PAB Panamanian balboa

TU Delft | Appendix A. Unit display type coding v1.5 40

CODE ABBREV. NAME
604 PEN Peruvian Sol
598 PGK Papua New Guinean kina
608 PHP Philippine peso
586 PKR Pakistani rupee
985 PLN Polish zloty
600 PYG Paraguayan guaraní
634 QAR Qatari riyal
946 RON Romanian leu
941 RSD Serbian dinar
643 RUB Russian ruble
646 RWF Rwandan franc
682 SAR Saudi riyal
090 SBD Solomon Islands dollar
690 SCR Seychelles rupee
938 SDG Sudanese pound
752 SEK Swedish krona/kronor
702 SGD Singapore dollar
654 SHP Saint Helena pound
694 SLL Sierra Leonean leone
706 SOS Somali shilling
968 SRD Surinamese dollar
728 SSP South Sudanese pound
678 STD São Tomé and Príncipe dobra
222 SVC Salvadoran colón
760 SYP Syrian pound
748 SZL Swazi lilangeni
764 THB Thai baht
972 TJS Tajikistani somoni
934 TMT Turkmenistani manat
788 TND Tunisian dinar
776 TOP Tongan pa?anga
949 TRY Turkish lira
780 TTD Trinidad and Tobago dollar
901 TWD New Taiwan dollar
834 TZS Tanzanian shilling
980 UAH Ukrainian hryvnia
800 UGX Ugandan shilling
840 USD United States dollar
997 USN United States dollar (next day) (funds code)
940 UYI Uruguay Peso en Unidades Indexadas (URUIURUI) (funds code)
858 UYU Uruguayan peso
860 UZS Uzbekistan som
937 VEF Venezuelan bolívar
704 VND Vietnamese dong
548 VUV Vanuatu vatu
882 WST Samoan tala
950 XAF CFA franc BEAC
961 XAG Silver (one troy ounce)
959 XAU Gold (one troy ounce)

TU Delft | Appendix A. Unit display type coding v1.5 41

CODE ABBREV. NAME
955 XBA European Composite Unit (EURCO) (bond market unit)
956 XBB European Monetary Unit (E.M.U.-6) (bond market unit)
957 XBC European Unit of Account 9 (E.U.A.-9) (bond market unit)
958 XBD European Unit of Account 17 (E.U.A.-17) (bond market unit)
951 XCD East Caribbean dollar
960 XDR Special drawing rights
952 XOF CFA franc BCEAO
964 XPD Palladium (one troy ounce)
953 XPF CFP franc (franc Pacifique)
962 XPT Platinum (one troy ounce)
994 XSU SUCRE
963 XTS Code reserved for testing purposes
965 XUA ADB Unit of Account
999 XXX No currency
886 YER Yemeni rial
710 ZAR South African rand
967 ZMW Zambian kwacha
932 ZWL Zimbabwean dollar A/10

1000 XBT Bitcoin

101. MoneyPerArea
For MoneyPerArea (code 101), it is suggested to send three bytes: two for the Money, followed by an
Area constant. As an example, if we want to send the price of land as € 2500 per hectare,
transmitted as a double (code 26), this would be coded as (€ has code 978 = #03D2):

 |26|101|0x03|0xD2|21|0x40|0xA3|0x88|0x00|0x00|0x00|0x00|0x00|

102. MoneyPerEnergy
For MoneyPerEnergy, it is suggested to send three bytes: two for the Money, followed by an Energy
display constant.

103. MoneyPerLength
For MoneyPerLength, it is suggested to send three bytes: two for the Money, followed by a Length
display constant.

104. MoneyPerMass
For MoneyPerMass, it is suggested to send three bytes: two for the Money, followed by a Mass
display constant.

105. MoneyPerDuration
For MoneyPerDuration, it is suggested to send three bytes: two for the Money, followed by a
Duration display constant.

106. MoneyPerVolume
For MoneyPerVolume, it is suggested to send three bytes: two for the Money, followed by a Volume
display constant.

	1 Sim0MQ Basics
	1.1 ØMQ Message Bus

	2 Message Structure
	2.1 Typed Sim0MQ Messages
	2.1.1 String types (#9 - #10)
	2.1.2 Array types (#11 - #17)
	2.1.3 Matrix types (#18 - #24)

	2.2 Coding of units
	2.2.1 Float with unit (#25)
	2.2.2 Double with unit (#26)
	2.2.3 Float array with unit (#27)
	2.2.4 Double array with unit (#28)
	2.2.5 Float matrix with unit (#29)
	2.2.6 Double matrix with unit (#30)
	2.2.7 Float matrix with unique units per column (#31)
	2.2.8 Double matrix with unique units per column (#32)
	2.2.9 Money units (#100) and Money units per quantity (unit types #101 - #106)

	2.3 Sim0MQ Simulation Messages
	2.3.1 Simulation run id
	2.3.2 Sender id
	2.3.3 Receiver id
	2.3.4 Message type id
	2.3.5 Message status id
	2.3.6 Example

	3 Sim0MQ Components
	3.1 Federate Starter
	3.2 Federation Manager
	3.3 REQ-ROUTER pattern

	4 Messages
	4.1 StartFederate (message type id = FM.1)
	4.1.1 Federate Starter’s instantiation of a model:

	4.2 RequestStatus (message type id = FS.1)
	4.3 Status (message type id = MC.1)
	4.4 FederateStarted (message type id = FS.2)
	4.5 SimRunControl (message type id = FM.2)
	4.6 AckNak (message type id = MC.2)
	4.7 SetParameter (message type id = FM.3)
	4.8 SimStart (message type id = FM.4)
	4.9 RequestStatus (message type id = FM.5)
	4.10 RequestStatistics (message type id = FM.6)
	4.11 Statistics (message type id = MC.3)
	4.12 StatisticsError (message type id = MC.4)
	4.13 SimReset (message type id = FM.7)
	4.14 KillFederate (message type id = FM.8)
	4.15 KillAll (message type id = FM.9)
	4.16 KillModel (message type id = FS.3)
	4.17 FederateKilled (message type id = FS.4)
	4.18 FederatesKilled (message type id = FS.5)

	5 Example: MM1-model with EMA workbench
	6 Notes and possible extensions
	6.1 Notes
	6.2 Possible extensions

	Appendix A. Unit display type coding
	0. Dimensionless
	1. Acceleration
	2. AngleSolid
	3. Angle
	4. Direction
	5. Area
	6. Density
	7. ElectricalCharge
	8. ElectricalCurrent
	9. ElectricalPotential
	10. ElectricalResistance
	11. Energy
	12. FlowMass
	13. FlowVolume
	14. Force
	15. Frequency
	16. Length
	17. Position
	18. LinearDensity
	19. Mass
	20. Power
	21. Pressure
	22. Speed
	23. Temperature
	24. AbsoluteTemperature
	25. Duration
	26. Time
	27. Torque
	28. Volume
	100. Money
	101. MoneyPerArea
	102. MoneyPerEnergy
	103. MoneyPerLength
	104. MoneyPerMass
	105. MoneyPerDuration
	106. MoneyPerVolume

