1 | define([ |
---|
2 | "dojo/_base/lang", |
---|
3 | "dojox/calc/_Executor" |
---|
4 | ], function(lang, calc) { |
---|
5 | |
---|
6 | var multiples; |
---|
7 | |
---|
8 | function _fracHashInit(){ |
---|
9 | var sqrts = [ |
---|
10 | 5,6,7,10,11,13,14,15,17,19,21,22,23,26,29, |
---|
11 | 30,31,33,34,35,37,38,39,41,42,43,46,47,51,53,55,57,58,59, |
---|
12 | 61,62,65,66,67,69,70,71,73,74,77,78,79,82,83,85,86,87,89,91,93,94,95,97 |
---|
13 | ]; |
---|
14 | multiples = { "1":1, "\u221A(2)":Math.sqrt(2), "\u221A(3)":Math.sqrt(3), "pi":Math.PI }; |
---|
15 | // populate the rest of the multiples array |
---|
16 | for(var i in sqrts){ |
---|
17 | var n = sqrts[i]; |
---|
18 | multiples["\u221A("+n+")"] = Math.sqrt(n); |
---|
19 | } |
---|
20 | multiples["\u221A(pi)"] = Math.sqrt(Math.PI); |
---|
21 | } |
---|
22 | |
---|
23 | function _fracLookup(number){ |
---|
24 | function findSimpleFraction(fraction){ |
---|
25 | var denom1Low = Math.floor(1 / fraction); |
---|
26 | // fraction <= 1/denom1Low |
---|
27 | var quotient = calc.approx(1 / denom1Low); |
---|
28 | if(quotient == fraction){ return { n:1, d:denom1Low }; } |
---|
29 | var denom1High = denom1Low + 1; |
---|
30 | // 1/denom1High <= fraction < 1/denom1Low |
---|
31 | quotient = calc.approx(1 / denom1High); |
---|
32 | if(quotient == fraction){ return { n:1, d:denom1High }; } |
---|
33 | if(denom1Low >= 50){ return null; } // only 1's in the numerator beyond this point |
---|
34 | // 1/denom1High < fraction < 1/denom1Low |
---|
35 | var denom2 = denom1Low + denom1High; |
---|
36 | quotient = calc.approx(2 / denom2); |
---|
37 | // 1/denom1High < 2/(denom1Low+denom1High) < 1/denom1Low |
---|
38 | if(quotient == fraction){ return { n:2, d:denom2 }; } |
---|
39 | if(denom1Low >= 34){ return null; } // only 1's and 2's in the numerator beyond this point |
---|
40 | var less2 = fraction < quotient; |
---|
41 | // if less2 |
---|
42 | // 1/denom1High < fraction < 2/(denom1Low+denom1High) |
---|
43 | // else |
---|
44 | // 2/(denom1Low+denom1High) < fraction < 1/denom1Low |
---|
45 | var denom4 = denom2 * 2 + (less2 ? 1 : -1); |
---|
46 | quotient = calc.approx(4 / denom4); |
---|
47 | // 1/denom1High < 4/(2*denom1Low+2*denom1High+1) < 2/(denom1Low+denom1High) < 4/(2*denom1Low+2*denom1High-1) < 1/denom1Low |
---|
48 | if(quotient == fraction){ return { n:4, d:denom4 }; } |
---|
49 | var less4 = fraction < quotient; |
---|
50 | // we've already checked for 1, 2 and 4, but now see if we need to check for 3 in the numerator |
---|
51 | if((less2 && !less4) || (!less2 && less4)){ |
---|
52 | var denom3 = (denom2 + denom4) >> 1; |
---|
53 | quotient = calc.approx(3 / denom3); |
---|
54 | // 1/denom1High < 4/(2*denom1Low+2*denom1High+1) < 3/((3*denom1Low+3*denom1High+1)/2) < 2/(denom1Low+denom1High) < 3/((3*denom1Low+3*denom1High-1)/2) < 4/(2*denom1Low+2*denom1High-1) < 1/denom1Low |
---|
55 | if(quotient == fraction){ return { n:3, d:denom3 }; } |
---|
56 | } |
---|
57 | if(denom1Low >= 20){ return null; } // only 1's, 2's, 3's, and 4's in the numerator beyond this point |
---|
58 | // if less2 |
---|
59 | // if less4 |
---|
60 | // 1/denom1High < fraction < 4/(2*denom1Low+2*denom1High+1) |
---|
61 | // else |
---|
62 | // 4/(2*denom1Low+2*denom1High+1) < fraction < 2/(denom1Low+denom1High) |
---|
63 | // else |
---|
64 | // if less4 |
---|
65 | // 2/(denom1Low+denom1High) < fraction < 4/(2*denom1Low+2*denom1High-1) |
---|
66 | // else |
---|
67 | // 4/(2*denom1Low+2*denom1High-1) < fraction < 1/denom1Low |
---|
68 | var smallestDenom = denom2 + denom1Low * 2; |
---|
69 | var largestDenom = smallestDenom + 2; |
---|
70 | for(var numerator = 5; smallestDenom <= 100; numerator++){ // start with 5 in the numerator |
---|
71 | smallestDenom += denom1Low; |
---|
72 | largestDenom += denom1High; |
---|
73 | var startDenom = less2 ? ((largestDenom + smallestDenom + 1) >> 1) : smallestDenom; |
---|
74 | var stopDenom = less2 ? largestDenom : ((largestDenom + smallestDenom - 1) >> 1); |
---|
75 | startDenom = less4 ? ((startDenom + stopDenom) >> 1) : startDenom; |
---|
76 | stopDenom = less4 ? stopDenom : ((startDenom + stopDenom) >> 1); |
---|
77 | for(var thisDenom = startDenom; thisDenom <= stopDenom; thisDenom++){ |
---|
78 | if(numerator & 1 == 0 && thisDenom & 1 == 0){ continue; } // skip where n and d are both even |
---|
79 | quotient = calc.approx(numerator / thisDenom); |
---|
80 | if(quotient == fraction){ return { n:numerator, d:thisDenom }; } |
---|
81 | if(quotient < fraction){ break; } // stop since the values will just get smaller |
---|
82 | } |
---|
83 | } |
---|
84 | return null; |
---|
85 | } |
---|
86 | number = Math.abs(number); |
---|
87 | for(var mt in multiples){ |
---|
88 | var multiple = multiples[mt]; |
---|
89 | var simpleFraction = number / multiple; |
---|
90 | var wholeNumber = Math.floor(simpleFraction); |
---|
91 | simpleFraction = calc.approx(simpleFraction - wholeNumber); |
---|
92 | if(simpleFraction == 0){ |
---|
93 | return { mt:mt, m:multiple, n:wholeNumber, d:1 }; |
---|
94 | }else{ |
---|
95 | var a = findSimpleFraction(simpleFraction); |
---|
96 | if(!a){ continue; } |
---|
97 | return { mt:mt, m:multiple, n:(wholeNumber * a.d + a.n), d:a.d }; |
---|
98 | } |
---|
99 | } |
---|
100 | return null; |
---|
101 | } |
---|
102 | |
---|
103 | // make the hash |
---|
104 | _fracHashInit(); |
---|
105 | |
---|
106 | // add toFrac to the calculator |
---|
107 | return lang.mixin(calc, { |
---|
108 | toFrac: function(number){// get a string fraction for a decimal with a set range of numbers, based on the hash |
---|
109 | var f = _fracLookup(number); |
---|
110 | return f ? ((number < 0 ? '-' : '') + (f.m == 1 ? '' : (f.n == 1 ? '' : (f.n + '*'))) + (f.m == 1 ? f.n : f.mt) + ((f.d == 1 ? '' : '/' + f.d))) : number; |
---|
111 | //return f ? ((number < 0 ? '-' : '') + (f.m == 1 ? '' : (f.n == 1 ? '' : (f.n + '*'))) + (f.m == 1 ? f.n : f.mt) + '/' + f.d) : number; |
---|
112 | }, |
---|
113 | pow: function(base, exponent){// pow benefits from toFrac because it can overcome many of the limitations set before the standard Math.pow |
---|
114 | // summary: |
---|
115 | // Computes base ^ exponent |
---|
116 | // Wrapper to Math.pow(base, exponent) to handle (-27) ^ (1/3) |
---|
117 | function isInt(n){ |
---|
118 | return Math.floor(n) == n; |
---|
119 | } |
---|
120 | |
---|
121 | if(base>0||isInt(exponent)){ |
---|
122 | return Math.pow(base, exponent); |
---|
123 | }else{ |
---|
124 | var f = _fracLookup(exponent); |
---|
125 | if(base >= 0){ |
---|
126 | return (f && f.m == 1) |
---|
127 | ? Math.pow(Math.pow(base, 1 / f.d), exponent < 0 ? -f.n : f.n) // 32 ^ (2/5) is much more accurate if done as (32 ^ (1/5)) ^ 2 |
---|
128 | : Math.pow(base, exponent); |
---|
129 | }else{ // e.g. (1/3) root of -27 = -3, 1 / exponent must be an odd integer for a negative base |
---|
130 | return (f && f.d & 1) ? Math.pow(Math.pow(-Math.pow(-base, 1 / f.d), exponent < 0 ? -f.n : f.n), f.m) : NaN; |
---|
131 | } |
---|
132 | } |
---|
133 | } |
---|
134 | }); |
---|
135 | /* |
---|
136 | function reduceError(number){ |
---|
137 | var f = _fracLookup(number); |
---|
138 | if(!f){ f = _fracLookup(number); } |
---|
139 | return f ? ((number < 0 ? -1 : 1) * f.n * f.m / f.d) : number; |
---|
140 | } |
---|
141 | */ |
---|
142 | }); |
---|