1 | define(["../base64", "./_base"], |
---|
2 | function(base64, crypto){ |
---|
3 | |
---|
4 | /*===== |
---|
5 | crypto = dojox.encoding.crypto; |
---|
6 | =====*/ |
---|
7 | |
---|
8 | // Sbox is pre-computed multiplicative inverse in GF(2^8) used in SubBytes and KeyExpansion [®ª5.1.1] |
---|
9 | var Sbox = [0x63,0x7c,0x77,0x7b,0xf2,0x6b,0x6f,0xc5,0x30,0x01,0x67,0x2b,0xfe,0xd7,0xab,0x76, |
---|
10 | 0xca,0x82,0xc9,0x7d,0xfa,0x59,0x47,0xf0,0xad,0xd4,0xa2,0xaf,0x9c,0xa4,0x72,0xc0, |
---|
11 | 0xb7,0xfd,0x93,0x26,0x36,0x3f,0xf7,0xcc,0x34,0xa5,0xe5,0xf1,0x71,0xd8,0x31,0x15, |
---|
12 | 0x04,0xc7,0x23,0xc3,0x18,0x96,0x05,0x9a,0x07,0x12,0x80,0xe2,0xeb,0x27,0xb2,0x75, |
---|
13 | 0x09,0x83,0x2c,0x1a,0x1b,0x6e,0x5a,0xa0,0x52,0x3b,0xd6,0xb3,0x29,0xe3,0x2f,0x84, |
---|
14 | 0x53,0xd1,0x00,0xed,0x20,0xfc,0xb1,0x5b,0x6a,0xcb,0xbe,0x39,0x4a,0x4c,0x58,0xcf, |
---|
15 | 0xd0,0xef,0xaa,0xfb,0x43,0x4d,0x33,0x85,0x45,0xf9,0x02,0x7f,0x50,0x3c,0x9f,0xa8, |
---|
16 | 0x51,0xa3,0x40,0x8f,0x92,0x9d,0x38,0xf5,0xbc,0xb6,0xda,0x21,0x10,0xff,0xf3,0xd2, |
---|
17 | 0xcd,0x0c,0x13,0xec,0x5f,0x97,0x44,0x17,0xc4,0xa7,0x7e,0x3d,0x64,0x5d,0x19,0x73, |
---|
18 | 0x60,0x81,0x4f,0xdc,0x22,0x2a,0x90,0x88,0x46,0xee,0xb8,0x14,0xde,0x5e,0x0b,0xdb, |
---|
19 | 0xe0,0x32,0x3a,0x0a,0x49,0x06,0x24,0x5c,0xc2,0xd3,0xac,0x62,0x91,0x95,0xe4,0x79, |
---|
20 | 0xe7,0xc8,0x37,0x6d,0x8d,0xd5,0x4e,0xa9,0x6c,0x56,0xf4,0xea,0x65,0x7a,0xae,0x08, |
---|
21 | 0xba,0x78,0x25,0x2e,0x1c,0xa6,0xb4,0xc6,0xe8,0xdd,0x74,0x1f,0x4b,0xbd,0x8b,0x8a, |
---|
22 | 0x70,0x3e,0xb5,0x66,0x48,0x03,0xf6,0x0e,0x61,0x35,0x57,0xb9,0x86,0xc1,0x1d,0x9e, |
---|
23 | 0xe1,0xf8,0x98,0x11,0x69,0xd9,0x8e,0x94,0x9b,0x1e,0x87,0xe9,0xce,0x55,0x28,0xdf, |
---|
24 | 0x8c,0xa1,0x89,0x0d,0xbf,0xe6,0x42,0x68,0x41,0x99,0x2d,0x0f,0xb0,0x54,0xbb,0x16]; |
---|
25 | |
---|
26 | // Rcon is Round Constant used for the Key Expansion [1st col is 2^(r-1) in GF(2^8)] [®ª5.2] |
---|
27 | var Rcon = [ [0x00, 0x00, 0x00, 0x00], |
---|
28 | [0x01, 0x00, 0x00, 0x00], |
---|
29 | [0x02, 0x00, 0x00, 0x00], |
---|
30 | [0x04, 0x00, 0x00, 0x00], |
---|
31 | [0x08, 0x00, 0x00, 0x00], |
---|
32 | [0x10, 0x00, 0x00, 0x00], |
---|
33 | [0x20, 0x00, 0x00, 0x00], |
---|
34 | [0x40, 0x00, 0x00, 0x00], |
---|
35 | [0x80, 0x00, 0x00, 0x00], |
---|
36 | [0x1b, 0x00, 0x00, 0x00], |
---|
37 | [0x36, 0x00, 0x00, 0x00] ]; |
---|
38 | |
---|
39 | /* |
---|
40 | * AES Cipher function: encrypt 'input' with Rijndael algorithm |
---|
41 | * |
---|
42 | * takes byte-array 'input' (16 bytes) |
---|
43 | * 2D byte-array key schedule 'w' (Nr+1 x Nb bytes) |
---|
44 | * |
---|
45 | * applies Nr rounds (10/12/14) using key schedule w for 'add round key' stage |
---|
46 | * |
---|
47 | * returns byte-array encrypted value (16 bytes) |
---|
48 | */ |
---|
49 | function Cipher(input, w) { // main Cipher function [®ª5.1] |
---|
50 | var Nb = 4; // block size (in words): no of columns in state (fixed at 4 for AES) |
---|
51 | var Nr = w.length/Nb - 1; // no of rounds: 10/12/14 for 128/192/256-bit keys |
---|
52 | |
---|
53 | var state = [[],[],[],[]]; // initialise 4xNb byte-array 'state' with input [®ª3.4] |
---|
54 | for (var i=0; i<4*Nb; i++) state[i%4][Math.floor(i/4)] = input[i]; |
---|
55 | |
---|
56 | state = AddRoundKey(state, w, 0, Nb); |
---|
57 | |
---|
58 | for (var round=1; round<Nr; round++) { |
---|
59 | state = SubBytes(state, Nb); |
---|
60 | state = ShiftRows(state, Nb); |
---|
61 | state = MixColumns(state, Nb); |
---|
62 | state = AddRoundKey(state, w, round, Nb); |
---|
63 | } |
---|
64 | |
---|
65 | state = SubBytes(state, Nb); |
---|
66 | state = ShiftRows(state, Nb); |
---|
67 | state = AddRoundKey(state, w, Nr, Nb); |
---|
68 | |
---|
69 | var output = new Array(4*Nb); // convert state to 1-d array before returning [®ª3.4] |
---|
70 | for (var i=0; i<4*Nb; i++) output[i] = state[i%4][Math.floor(i/4)]; |
---|
71 | return output; |
---|
72 | } |
---|
73 | |
---|
74 | |
---|
75 | function SubBytes(s, Nb) { // apply SBox to state S [®ª5.1.1] |
---|
76 | for (var r=0; r<4; r++) { |
---|
77 | for (var c=0; c<Nb; c++) s[r][c] = Sbox[s[r][c]]; |
---|
78 | } |
---|
79 | return s; |
---|
80 | } |
---|
81 | |
---|
82 | |
---|
83 | function ShiftRows(s, Nb) { // shift row r of state S left by r bytes [®ª5.1.2] |
---|
84 | var t = new Array(4); |
---|
85 | for (var r=1; r<4; r++) { |
---|
86 | for (var c=0; c<4; c++) t[c] = s[r][(c+r)%Nb]; // shift into temp copy |
---|
87 | for (var c=0; c<4; c++) s[r][c] = t[c]; // and copy back |
---|
88 | } // note that this will work for Nb=4,5,6, but not 7,8 (always 4 for AES): |
---|
89 | return s; // see fp.gladman.plus.com/cryptography_technology/rijndael/aes.spec.311.pdf |
---|
90 | } |
---|
91 | |
---|
92 | |
---|
93 | function MixColumns(s, Nb) { // combine bytes of each col of state S [®ª5.1.3] |
---|
94 | for (var c=0; c<4; c++) { |
---|
95 | var a = new Array(4); // 'a' is a copy of the current column from 's' |
---|
96 | var b = new Array(4); // 'b' is aÞ{02} in GF(2^8) |
---|
97 | for (var i=0; i<4; i++) { |
---|
98 | a[i] = s[i][c]; |
---|
99 | b[i] = s[i][c]&0x80 ? s[i][c]<<1 ^ 0x011b : s[i][c]<<1; |
---|
100 | } |
---|
101 | // a[n] ^ b[n] is aÞ{03} in GF(2^8) |
---|
102 | s[0][c] = b[0] ^ a[1] ^ b[1] ^ a[2] ^ a[3]; // 2*a0 + 3*a1 + a2 + a3 |
---|
103 | s[1][c] = a[0] ^ b[1] ^ a[2] ^ b[2] ^ a[3]; // a0 * 2*a1 + 3*a2 + a3 |
---|
104 | s[2][c] = a[0] ^ a[1] ^ b[2] ^ a[3] ^ b[3]; // a0 + a1 + 2*a2 + 3*a3 |
---|
105 | s[3][c] = a[0] ^ b[0] ^ a[1] ^ a[2] ^ b[3]; // 3*a0 + a1 + a2 + 2*a3 |
---|
106 | } |
---|
107 | return s; |
---|
108 | } |
---|
109 | |
---|
110 | |
---|
111 | function AddRoundKey(state, w, rnd, Nb) { // xor Round Key into state S [®ª5.1.4] |
---|
112 | for (var r=0; r<4; r++) { |
---|
113 | for (var c=0; c<Nb; c++) state[r][c] ^= w[rnd*4+c][r]; |
---|
114 | } |
---|
115 | return state; |
---|
116 | } |
---|
117 | |
---|
118 | |
---|
119 | function KeyExpansion(key) { // generate Key Schedule (byte-array Nr+1 x Nb) from Key [®ª5.2] |
---|
120 | var Nb = 4; // block size (in words): no of columns in state (fixed at 4 for AES) |
---|
121 | var Nk = key.length/4 // key length (in words): 4/6/8 for 128/192/256-bit keys |
---|
122 | var Nr = Nk + 6; // no of rounds: 10/12/14 for 128/192/256-bit keys |
---|
123 | |
---|
124 | var w = new Array(Nb*(Nr+1)); |
---|
125 | var temp = new Array(4); |
---|
126 | |
---|
127 | for (var i=0; i<Nk; i++) { |
---|
128 | var r = [key[4*i], key[4*i+1], key[4*i+2], key[4*i+3]]; |
---|
129 | w[i] = r; |
---|
130 | } |
---|
131 | |
---|
132 | for (var i=Nk; i<(Nb*(Nr+1)); i++) { |
---|
133 | w[i] = new Array(4); |
---|
134 | for (var t=0; t<4; t++) temp[t] = w[i-1][t]; |
---|
135 | if (i % Nk == 0) { |
---|
136 | temp = SubWord(RotWord(temp)); |
---|
137 | for (var t=0; t<4; t++) temp[t] ^= Rcon[i/Nk][t]; |
---|
138 | } else if (Nk > 6 && i%Nk == 4) { |
---|
139 | temp = SubWord(temp); |
---|
140 | } |
---|
141 | for (var t=0; t<4; t++) w[i][t] = w[i-Nk][t] ^ temp[t]; |
---|
142 | } |
---|
143 | |
---|
144 | return w; |
---|
145 | } |
---|
146 | |
---|
147 | function SubWord(w) { // apply SBox to 4-byte word w |
---|
148 | for (var i=0; i<4; i++) w[i] = Sbox[w[i]]; |
---|
149 | return w; |
---|
150 | } |
---|
151 | |
---|
152 | function RotWord(w) { // rotate 4-byte word w left by one byte |
---|
153 | w[4] = w[0]; |
---|
154 | for (var i=0; i<4; i++) w[i] = w[i+1]; |
---|
155 | return w; |
---|
156 | } |
---|
157 | |
---|
158 | /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */ |
---|
159 | |
---|
160 | /* |
---|
161 | * Use AES to encrypt 'plaintext' with 'password' using 'nBits' key, in 'Counter' mode of operation |
---|
162 | * - see http://csrc.nist.gov/publications/nistpubs/800-38a/sp800-38a.pdf |
---|
163 | * for each block |
---|
164 | * - outputblock = cipher(counter, key) |
---|
165 | * - cipherblock = plaintext xor outputblock |
---|
166 | */ |
---|
167 | function AESEncryptCtr(plaintext, password, nBits) { |
---|
168 | if (!(nBits==128 || nBits==192 || nBits==256)) return ''; // standard allows 128/192/256 bit keys |
---|
169 | |
---|
170 | // for this example script, generate the key by applying Cipher to 1st 16/24/32 chars of password; |
---|
171 | // for real-world applications, a more secure approach would be to hash the password e.g. with SHA-1 |
---|
172 | var nBytes = nBits/8; // no bytes in key |
---|
173 | var pwBytes = new Array(nBytes); |
---|
174 | for (var i=0; i<nBytes; i++) pwBytes[i] = password.charCodeAt(i) & 0xff; |
---|
175 | |
---|
176 | var key = Cipher(pwBytes, KeyExpansion(pwBytes)); |
---|
177 | |
---|
178 | key = key.concat(key.slice(0, nBytes-16)); // key is now 16/24/32 bytes long |
---|
179 | |
---|
180 | // initialise counter block (NIST SP800-38A ®ªB.2): millisecond time-stamp for nonce in 1st 8 bytes, |
---|
181 | // block counter in 2nd 8 bytes |
---|
182 | var blockSize = 16; // block size fixed at 16 bytes / 128 bits (Nb=4) for AES |
---|
183 | var counterBlock = new Array(blockSize); // block size fixed at 16 bytes / 128 bits (Nb=4) for AES |
---|
184 | var nonce = (new Date()).getTime(); // milliseconds since 1-Jan-1970 |
---|
185 | |
---|
186 | // encode nonce in two stages to cater for JavaScript 32-bit limit on bitwise ops |
---|
187 | for (var i=0; i<4; i++) counterBlock[i] = (nonce >>> i*8) & 0xff; |
---|
188 | for (var i=0; i<4; i++) counterBlock[i+4] = (nonce/0x100000000 >>> i*8) & 0xff; |
---|
189 | |
---|
190 | // generate key schedule - an expansion of the key into distinct Key Rounds for each round |
---|
191 | var keySchedule = KeyExpansion(key); |
---|
192 | |
---|
193 | var blockCount = Math.ceil(plaintext.length/blockSize); |
---|
194 | var ciphertext = new Array(blockCount); // ciphertext as array of strings |
---|
195 | |
---|
196 | for (var b=0; b<blockCount; b++) { |
---|
197 | // set counter (block #) in last 8 bytes of counter block (leaving nonce in 1st 8 bytes) |
---|
198 | // again done in two stages for 32-bit ops |
---|
199 | for (var c=0; c<4; c++) counterBlock[15-c] = (b >>> c*8) & 0xff; |
---|
200 | for (var c=0; c<4; c++) counterBlock[15-c-4] = (b/0x100000000 >>> c*8) |
---|
201 | |
---|
202 | var cipherCntr = Cipher(counterBlock, keySchedule); // -- encrypt counter block -- |
---|
203 | |
---|
204 | // calculate length of final block: |
---|
205 | var blockLength = b<blockCount-1 ? blockSize : (plaintext.length-1)%blockSize+1; |
---|
206 | |
---|
207 | var ct = ''; |
---|
208 | for (var i=0; i<blockLength; i++) { // -- xor plaintext with ciphered counter byte-by-byte -- |
---|
209 | var plaintextByte = plaintext.charCodeAt(b*blockSize+i); |
---|
210 | var cipherByte = plaintextByte ^ cipherCntr[i]; |
---|
211 | //ct += String.fromCharCode(cipherByte); |
---|
212 | ct += ((cipherByte < 16) ? "0" : "") + cipherByte.toString(16); |
---|
213 | } |
---|
214 | // ct is now ciphertext for this block |
---|
215 | |
---|
216 | ciphertext[b] = ct; // escCtrlChars(ct); // escape troublesome characters in ciphertext |
---|
217 | } |
---|
218 | |
---|
219 | // convert the nonce to a string to go on the front of the ciphertext |
---|
220 | var ctrTxt = ''; |
---|
221 | for (var i=0; i<8; i++) ctrTxt += ((counterBlock[i] < 16) ? "0" : "") + counterBlock[i].toString(16); //String.fromCharCode(counterBlock[i]); |
---|
222 | //ctrTxt = escCtrlChars(ctrTxt); |
---|
223 | |
---|
224 | // use '-' to separate blocks, use Array.join to concatenate arrays of strings for efficiency |
---|
225 | return ctrTxt + ' ' + ciphertext.join(' '); |
---|
226 | } |
---|
227 | |
---|
228 | function stringToHex(s){ |
---|
229 | var ret = []; |
---|
230 | s.replace(/(..)/g, function(str){ |
---|
231 | ret.push(parseInt(str, 16)); |
---|
232 | }); |
---|
233 | return ret; |
---|
234 | } |
---|
235 | |
---|
236 | /* |
---|
237 | * Use AES to decrypt 'ciphertext' with 'password' using 'nBits' key, in Counter mode of operation |
---|
238 | * |
---|
239 | * for each block |
---|
240 | * - outputblock = cipher(counter, key) |
---|
241 | * - cipherblock = plaintext xor outputblock |
---|
242 | */ |
---|
243 | function AESDecryptCtr(ciphertext, password, nBits) { |
---|
244 | if (!(nBits==128 || nBits==192 || nBits==256)) return ''; // standard allows 128/192/256 bit keys |
---|
245 | |
---|
246 | var nBytes = nBits/8; // no bytes in key |
---|
247 | var pwBytes = new Array(nBytes); |
---|
248 | for (var i=0; i<nBytes; i++) pwBytes[i] = password.charCodeAt(i) & 0xff; |
---|
249 | var pwKeySchedule = KeyExpansion(pwBytes); |
---|
250 | var key = Cipher(pwBytes, pwKeySchedule); |
---|
251 | key = key.concat(key.slice(0, nBytes-16)); // key is now 16/24/32 bytes long |
---|
252 | |
---|
253 | var keySchedule = KeyExpansion(key); |
---|
254 | |
---|
255 | ciphertext = ciphertext.split(' '); // split ciphertext into array of block-length strings |
---|
256 | |
---|
257 | // recover nonce from 1st element of ciphertext |
---|
258 | var blockSize = 16; // block size fixed at 16 bytes / 128 bits (Nb=4) for AES |
---|
259 | var counterBlock = new Array(blockSize); |
---|
260 | var ctrTxt = ciphertext[0]; //unescCtrlChars(ciphertext[0]); |
---|
261 | counterBlock = stringToHex(ctrTxt); |
---|
262 | |
---|
263 | var plaintext = new Array(ciphertext.length-1); |
---|
264 | |
---|
265 | for (var b=1; b<ciphertext.length; b++) { |
---|
266 | // set counter (block #) in last 8 bytes of counter block (leaving nonce in 1st 8 bytes) |
---|
267 | for (var c=0; c<4; c++) counterBlock[15-c] = ((b-1) >>> c*8) & 0xff; |
---|
268 | for (var c=0; c<4; c++) counterBlock[15-c-4] = ((b/0x100000000-1) >>> c*8) & 0xff; |
---|
269 | |
---|
270 | var cipherCntr = Cipher(counterBlock, keySchedule); // encrypt counter block |
---|
271 | |
---|
272 | //ciphertext[b] = ciphertext[b]; //unescCtrlChars(ciphertext[b]); |
---|
273 | |
---|
274 | var pt = ''; |
---|
275 | var tmp = stringToHex(ciphertext[b]); |
---|
276 | for (var i=0; i<tmp.length; i++) { |
---|
277 | // -- xor plaintext with ciphered counter byte-by-byte -- |
---|
278 | var ciphertextByte = ciphertext[b].charCodeAt(i); |
---|
279 | var plaintextByte = tmp[i] ^ cipherCntr[i]; |
---|
280 | pt += String.fromCharCode(plaintextByte); |
---|
281 | } |
---|
282 | // pt is now plaintext for this block |
---|
283 | |
---|
284 | plaintext[b-1] = pt; // b-1 'cos no initial nonce block in plaintext |
---|
285 | } |
---|
286 | |
---|
287 | return plaintext.join(''); |
---|
288 | } |
---|
289 | |
---|
290 | /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */ |
---|
291 | |
---|
292 | function escCtrlChars(str) { // escape control chars which might cause problems handling ciphertext |
---|
293 | return str.replace(/[\0\t\n\v\f\r\xa0!-]/g, function(c) { return '!' + c.charCodeAt(0) + '!'; }); |
---|
294 | } // \xa0 to cater for bug in Firefox; include '-' to leave it free for use as a block marker |
---|
295 | |
---|
296 | function unescCtrlChars(str) { // unescape potentially problematic control characters |
---|
297 | return str.replace(/!\d\d?\d?!/g, function(c) { return String.fromCharCode(c.slice(1,-1)); }); |
---|
298 | } |
---|
299 | |
---|
300 | /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */ |
---|
301 | |
---|
302 | crypto.SimpleAES = new (function(){ |
---|
303 | // summary: |
---|
304 | // SimpleAES, ported from dojox.sql, and done without the need for |
---|
305 | // a Google Gears worker pool. |
---|
306 | // description: |
---|
307 | // Taken from http://www.movable-type.co.uk/scripts/aes.html by |
---|
308 | // Chris Veness (CLA signed); adapted for Dojo by Brad Neuberg |
---|
309 | // (bkn3 AT columbia.edu) and moved to DojoX crypto by Tom Trenka |
---|
310 | // (ttrenka AT gmail.com). |
---|
311 | // |
---|
312 | // A few notes: |
---|
313 | // 1) This algorithm uses a customized version of CBC mode by creating |
---|
314 | // a nonce, using it as an initialization vector, and storing the |
---|
315 | // IV as the first portion of the encrypted text. Because of this, it |
---|
316 | // is HIGHLY PROBABLE that it will NOT be usable by other AES implementations. |
---|
317 | // 2) All encoding is done in hex format; other encoding formats (such |
---|
318 | // as base 64) are not supported. |
---|
319 | // 3) The bit depth of the key is hardcoded at 256, despite the ability |
---|
320 | // of the code to handle all three recommended bit depths. |
---|
321 | // 4) The passed key will be padded (as opposed to enforcing a strict |
---|
322 | // length) with null bytes. |
---|
323 | this.encrypt = function(/* String */plaintext, /* String */key){ |
---|
324 | // summary: |
---|
325 | // Encrypt the passed plaintext using the key, with a |
---|
326 | // hardcoded bit depth of 256. |
---|
327 | return AESEncryptCtr(plaintext, key, 256); // String |
---|
328 | }; |
---|
329 | this.decrypt = function(/* String */ciphertext, /* String */key){ |
---|
330 | // summary: |
---|
331 | // Decrypt the passed ciphertext using the key at a fixed |
---|
332 | // bit depth of 256. |
---|
333 | return AESDecryptCtr(ciphertext, key, 256); // String |
---|
334 | }; |
---|
335 | })(); |
---|
336 | |
---|
337 | return crypto.SimpleAES; |
---|
338 | }); |
---|