1 | define(["./_base", "dojo/_base/lang", "./matrix"], |
---|
2 | function (g, lang, m){ |
---|
3 | /*===== g = dojox.gfx =====*/ |
---|
4 | function eq(/* Number */ a, /* Number */ b){ |
---|
5 | // summary: compare two FP numbers for equality |
---|
6 | return Math.abs(a - b) <= 1e-6 * (Math.abs(a) + Math.abs(b)); // Boolean |
---|
7 | } |
---|
8 | |
---|
9 | function calcFromValues(/* Number */ r1, /* Number */ m1, /* Number */ r2, /* Number */ m2){ |
---|
10 | // summary: uses two close FP ration and their original magnitudes to approximate the result |
---|
11 | if(!isFinite(r1)){ |
---|
12 | return r2; // Number |
---|
13 | }else if(!isFinite(r2)){ |
---|
14 | return r1; // Number |
---|
15 | } |
---|
16 | m1 = Math.abs(m1); m2 = Math.abs(m2); |
---|
17 | return (m1 * r1 + m2 * r2) / (m1 + m2); // Number |
---|
18 | } |
---|
19 | |
---|
20 | function transpose(/* dojox.gfx.matrix.Matrix2D */ matrix){ |
---|
21 | // matrix: dojox.gfx.matrix.Matrix2D: a 2D matrix-like object |
---|
22 | var M = new m.Matrix2D(matrix); |
---|
23 | return lang.mixin(M, {dx: 0, dy: 0, xy: M.yx, yx: M.xy}); // dojox.gfx.matrix.Matrix2D |
---|
24 | } |
---|
25 | |
---|
26 | function scaleSign(/* dojox.gfx.matrix.Matrix2D */ matrix){ |
---|
27 | return (matrix.xx * matrix.yy < 0 || matrix.xy * matrix.yx > 0) ? -1 : 1; // Number |
---|
28 | } |
---|
29 | |
---|
30 | function eigenvalueDecomposition(/* dojox.gfx.matrix.Matrix2D */ matrix){ |
---|
31 | // matrix: dojox.gfx.matrix.Matrix2D: a 2D matrix-like object |
---|
32 | var M = m.normalize(matrix), |
---|
33 | b = -M.xx - M.yy, |
---|
34 | c = M.xx * M.yy - M.xy * M.yx, |
---|
35 | d = Math.sqrt(b * b - 4 * c), |
---|
36 | l1 = -(b + (b < 0 ? -d : d)) / 2, |
---|
37 | l2 = c / l1, |
---|
38 | vx1 = M.xy / (l1 - M.xx), vy1 = 1, |
---|
39 | vx2 = M.xy / (l2 - M.xx), vy2 = 1; |
---|
40 | if(eq(l1, l2)){ |
---|
41 | vx1 = 1, vy1 = 0, vx2 = 0, vy2 = 1; |
---|
42 | } |
---|
43 | if(!isFinite(vx1)){ |
---|
44 | vx1 = 1, vy1 = (l1 - M.xx) / M.xy; |
---|
45 | if(!isFinite(vy1)){ |
---|
46 | vx1 = (l1 - M.yy) / M.yx, vy1 = 1; |
---|
47 | if(!isFinite(vx1)){ |
---|
48 | vx1 = 1, vy1 = M.yx / (l1 - M.yy); |
---|
49 | } |
---|
50 | } |
---|
51 | } |
---|
52 | if(!isFinite(vx2)){ |
---|
53 | vx2 = 1, vy2 = (l2 - M.xx) / M.xy; |
---|
54 | if(!isFinite(vy2)){ |
---|
55 | vx2 = (l2 - M.yy) / M.yx, vy2 = 1; |
---|
56 | if(!isFinite(vx2)){ |
---|
57 | vx2 = 1, vy2 = M.yx / (l2 - M.yy); |
---|
58 | } |
---|
59 | } |
---|
60 | } |
---|
61 | var d1 = Math.sqrt(vx1 * vx1 + vy1 * vy1), |
---|
62 | d2 = Math.sqrt(vx2 * vx2 + vy2 * vy2); |
---|
63 | if(!isFinite(vx1 /= d1)){ vx1 = 0; } |
---|
64 | if(!isFinite(vy1 /= d1)){ vy1 = 0; } |
---|
65 | if(!isFinite(vx2 /= d2)){ vx2 = 0; } |
---|
66 | if(!isFinite(vy2 /= d2)){ vy2 = 0; } |
---|
67 | return { // Object |
---|
68 | value1: l1, |
---|
69 | value2: l2, |
---|
70 | vector1: {x: vx1, y: vy1}, |
---|
71 | vector2: {x: vx2, y: vy2} |
---|
72 | }; |
---|
73 | } |
---|
74 | |
---|
75 | function decomposeSR(/* dojox.gfx.matrix.Matrix2D */ M, /* Object */ result){ |
---|
76 | // summary: decomposes a matrix into [scale, rotate]; no checks are done. |
---|
77 | var sign = scaleSign(M), |
---|
78 | a = result.angle1 = (Math.atan2(M.yx, M.yy) + Math.atan2(-sign * M.xy, sign * M.xx)) / 2, |
---|
79 | cos = Math.cos(a), sin = Math.sin(a); |
---|
80 | result.sx = calcFromValues(M.xx / cos, cos, -M.xy / sin, sin); |
---|
81 | result.sy = calcFromValues(M.yy / cos, cos, M.yx / sin, sin); |
---|
82 | return result; // Object |
---|
83 | } |
---|
84 | |
---|
85 | function decomposeRS(/* dojox.gfx.matrix.Matrix2D */ M, /* Object */ result){ |
---|
86 | // summary: decomposes a matrix into [rotate, scale]; no checks are done |
---|
87 | var sign = scaleSign(M), |
---|
88 | a = result.angle2 = (Math.atan2(sign * M.yx, sign * M.xx) + Math.atan2(-M.xy, M.yy)) / 2, |
---|
89 | cos = Math.cos(a), sin = Math.sin(a); |
---|
90 | result.sx = calcFromValues(M.xx / cos, cos, M.yx / sin, sin); |
---|
91 | result.sy = calcFromValues(M.yy / cos, cos, -M.xy / sin, sin); |
---|
92 | return result; // Object |
---|
93 | } |
---|
94 | |
---|
95 | return g.decompose = function(matrix){ |
---|
96 | // summary: Decompose a 2D matrix into translation, scaling, and rotation components. |
---|
97 | // description: This function decompose a matrix into four logical components: |
---|
98 | // translation, rotation, scaling, and one more rotation using SVD. |
---|
99 | // The components should be applied in following order: |
---|
100 | // | [translate, rotate(angle2), scale, rotate(angle1)] |
---|
101 | // matrix: dojox.gfx.matrix.Matrix2D: a 2D matrix-like object |
---|
102 | var M = m.normalize(matrix), |
---|
103 | result = {dx: M.dx, dy: M.dy, sx: 1, sy: 1, angle1: 0, angle2: 0}; |
---|
104 | // detect case: [scale] |
---|
105 | if(eq(M.xy, 0) && eq(M.yx, 0)){ |
---|
106 | return lang.mixin(result, {sx: M.xx, sy: M.yy}); // Object |
---|
107 | } |
---|
108 | // detect case: [scale, rotate] |
---|
109 | if(eq(M.xx * M.yx, -M.xy * M.yy)){ |
---|
110 | return decomposeSR(M, result); // Object |
---|
111 | } |
---|
112 | // detect case: [rotate, scale] |
---|
113 | if(eq(M.xx * M.xy, -M.yx * M.yy)){ |
---|
114 | return decomposeRS(M, result); // Object |
---|
115 | } |
---|
116 | // do SVD |
---|
117 | var MT = transpose(M), |
---|
118 | u = eigenvalueDecomposition([M, MT]), |
---|
119 | v = eigenvalueDecomposition([MT, M]), |
---|
120 | U = new m.Matrix2D({xx: u.vector1.x, xy: u.vector2.x, yx: u.vector1.y, yy: u.vector2.y}), |
---|
121 | VT = new m.Matrix2D({xx: v.vector1.x, xy: v.vector1.y, yx: v.vector2.x, yy: v.vector2.y}), |
---|
122 | S = new m.Matrix2D([m.invert(U), M, m.invert(VT)]); |
---|
123 | decomposeSR(VT, result); |
---|
124 | S.xx *= result.sx; |
---|
125 | S.yy *= result.sy; |
---|
126 | decomposeRS(U, result); |
---|
127 | S.xx *= result.sx; |
---|
128 | S.yy *= result.sy; |
---|
129 | return lang.mixin(result, {sx: S.xx, sy: S.yy}); // Object |
---|
130 | }; |
---|
131 | }); |
---|