1 | dojo.provide("dojox.lang.functional.util"); |
---|
2 | |
---|
3 | dojo.require("dojox.lang.functional.lambda"); |
---|
4 | |
---|
5 | // This module provides helpers: |
---|
6 | // - inlining string lambda functions. |
---|
7 | |
---|
8 | (function(){ |
---|
9 | var df = dojox.lang.functional; |
---|
10 | |
---|
11 | dojo.mixin(df, { |
---|
12 | inlineLambda: function(/*String*/ lambda, /*String|Array*/ init, /*Function?*/ add2dict){ |
---|
13 | // summary: |
---|
14 | // Creates the inlined version of a string lambda. |
---|
15 | // lambda: |
---|
16 | // The String variable representing the lambda function. |
---|
17 | // init: |
---|
18 | // Conveys how to initialize parameters. If it is a String, then the apply() method |
---|
19 | // would be emulated treating "init" as a list of input parameters. |
---|
20 | // It it is an Array, then the call() method is emulated treating array members |
---|
21 | // as input parameters. |
---|
22 | // add2dict: |
---|
23 | // The optional function, which is used to record names of lambda parameters. |
---|
24 | // If supplied, this function is called with a name of every parameter. |
---|
25 | |
---|
26 | var s = df.rawLambda(lambda); |
---|
27 | if(add2dict){ |
---|
28 | df.forEach(s.args, add2dict); |
---|
29 | } |
---|
30 | var ap = typeof init == "string", // apply or call? |
---|
31 | n = ap ? s.args.length : Math.min(s.args.length, init.length), |
---|
32 | a = new Array(4 * n + 4), i, j = 1; |
---|
33 | for(i = 0; i < n; ++i){ |
---|
34 | a[j++] = s.args[i]; |
---|
35 | a[j++] = "="; |
---|
36 | a[j++] = ap ? init + "[" + i + "]": init[i]; |
---|
37 | a[j++] = ","; |
---|
38 | } |
---|
39 | a[0] = "("; |
---|
40 | a[j++] = "("; |
---|
41 | a[j++] = s.body; |
---|
42 | a[j] = "))"; |
---|
43 | return a.join(""); // String |
---|
44 | } |
---|
45 | }); |
---|
46 | })(); |
---|