1 | // AMD-ID "dojox/math/BigInteger-ext" |
---|
2 | define(["dojo", "dojox", "dojox/math/BigInteger"], function(dojo, dojox) { |
---|
3 | dojo.experimental("dojox.math.BigInteger-ext"); |
---|
4 | |
---|
5 | // Contributed under CLA by Tom Wu |
---|
6 | |
---|
7 | // Extended JavaScript BN functions, required for RSA private ops. |
---|
8 | var BigInteger = dojox.math.BigInteger, |
---|
9 | nbi = BigInteger._nbi, nbv = BigInteger._nbv, |
---|
10 | nbits = BigInteger._nbits, |
---|
11 | Montgomery = BigInteger._Montgomery; |
---|
12 | |
---|
13 | // (public) |
---|
14 | function bnClone() { var r = nbi(); this._copyTo(r); return r; } |
---|
15 | |
---|
16 | // (public) return value as integer |
---|
17 | function bnIntValue() { |
---|
18 | if(this.s < 0) { |
---|
19 | if(this.t == 1) return this[0]-this._DV; |
---|
20 | else if(this.t == 0) return -1; |
---|
21 | } |
---|
22 | else if(this.t == 1) return this[0]; |
---|
23 | else if(this.t == 0) return 0; |
---|
24 | // assumes 16 < DB < 32 |
---|
25 | return ((this[1]&((1<<(32-this._DB))-1))<<this._DB)|this[0]; |
---|
26 | } |
---|
27 | |
---|
28 | // (public) return value as byte |
---|
29 | function bnByteValue() { return (this.t==0)?this.s:(this[0]<<24)>>24; } |
---|
30 | |
---|
31 | // (public) return value as short (assumes DB>=16) |
---|
32 | function bnShortValue() { return (this.t==0)?this.s:(this[0]<<16)>>16; } |
---|
33 | |
---|
34 | // (protected) return x s.t. r^x < DV |
---|
35 | function bnpChunkSize(r) { return Math.floor(Math.LN2*this._DB/Math.log(r)); } |
---|
36 | |
---|
37 | // (public) 0 if this == 0, 1 if this > 0 |
---|
38 | function bnSigNum() { |
---|
39 | if(this.s < 0) return -1; |
---|
40 | else if(this.t <= 0 || (this.t == 1 && this[0] <= 0)) return 0; |
---|
41 | else return 1; |
---|
42 | } |
---|
43 | |
---|
44 | // (protected) convert to radix string |
---|
45 | function bnpToRadix(b) { |
---|
46 | if(b == null) b = 10; |
---|
47 | if(this.signum() == 0 || b < 2 || b > 36) return "0"; |
---|
48 | var cs = this._chunkSize(b); |
---|
49 | var a = Math.pow(b,cs); |
---|
50 | var d = nbv(a), y = nbi(), z = nbi(), r = ""; |
---|
51 | this._divRemTo(d,y,z); |
---|
52 | while(y.signum() > 0) { |
---|
53 | r = (a+z.intValue()).toString(b).substr(1) + r; |
---|
54 | y._divRemTo(d,y,z); |
---|
55 | } |
---|
56 | return z.intValue().toString(b) + r; |
---|
57 | } |
---|
58 | |
---|
59 | // (protected) convert from radix string |
---|
60 | function bnpFromRadix(s,b) { |
---|
61 | this._fromInt(0); |
---|
62 | if(b == null) b = 10; |
---|
63 | var cs = this._chunkSize(b); |
---|
64 | var d = Math.pow(b,cs), mi = false, j = 0, w = 0; |
---|
65 | for(var i = 0; i < s.length; ++i) { |
---|
66 | var x = intAt(s,i); |
---|
67 | if(x < 0) { |
---|
68 | if(s.charAt(i) == "-" && this.signum() == 0) mi = true; |
---|
69 | continue; |
---|
70 | } |
---|
71 | w = b*w+x; |
---|
72 | if(++j >= cs) { |
---|
73 | this._dMultiply(d); |
---|
74 | this._dAddOffset(w,0); |
---|
75 | j = 0; |
---|
76 | w = 0; |
---|
77 | } |
---|
78 | } |
---|
79 | if(j > 0) { |
---|
80 | this._dMultiply(Math.pow(b,j)); |
---|
81 | this._dAddOffset(w,0); |
---|
82 | } |
---|
83 | if(mi) BigInteger.ZERO._subTo(this,this); |
---|
84 | } |
---|
85 | |
---|
86 | // (protected) alternate constructor |
---|
87 | function bnpFromNumber(a,b,c) { |
---|
88 | if("number" == typeof b) { |
---|
89 | // new BigInteger(int,int,RNG) |
---|
90 | if(a < 2) this._fromInt(1); |
---|
91 | else { |
---|
92 | this._fromNumber(a,c); |
---|
93 | if(!this.testBit(a-1)) // force MSB set |
---|
94 | this._bitwiseTo(BigInteger.ONE.shiftLeft(a-1),op_or,this); |
---|
95 | if(this._isEven()) this._dAddOffset(1,0); // force odd |
---|
96 | while(!this.isProbablePrime(b)) { |
---|
97 | this._dAddOffset(2,0); |
---|
98 | if(this.bitLength() > a) this._subTo(BigInteger.ONE.shiftLeft(a-1),this); |
---|
99 | } |
---|
100 | } |
---|
101 | } |
---|
102 | else { |
---|
103 | // new BigInteger(int,RNG) |
---|
104 | var x = [], t = a&7; |
---|
105 | x.length = (a>>3)+1; |
---|
106 | b.nextBytes(x); |
---|
107 | if(t > 0) x[0] &= ((1<<t)-1); else x[0] = 0; |
---|
108 | this._fromString(x,256); |
---|
109 | } |
---|
110 | } |
---|
111 | |
---|
112 | // (public) convert to bigendian byte array |
---|
113 | function bnToByteArray() { |
---|
114 | var i = this.t, r = []; |
---|
115 | r[0] = this.s; |
---|
116 | var p = this._DB-(i*this._DB)%8, d, k = 0; |
---|
117 | if(i-- > 0) { |
---|
118 | if(p < this._DB && (d = this[i]>>p) != (this.s&this._DM)>>p) |
---|
119 | r[k++] = d|(this.s<<(this._DB-p)); |
---|
120 | while(i >= 0) { |
---|
121 | if(p < 8) { |
---|
122 | d = (this[i]&((1<<p)-1))<<(8-p); |
---|
123 | d |= this[--i]>>(p+=this._DB-8); |
---|
124 | } |
---|
125 | else { |
---|
126 | d = (this[i]>>(p-=8))&0xff; |
---|
127 | if(p <= 0) { p += this._DB; --i; } |
---|
128 | } |
---|
129 | if((d&0x80) != 0) d |= -256; |
---|
130 | if(k == 0 && (this.s&0x80) != (d&0x80)) ++k; |
---|
131 | if(k > 0 || d != this.s) r[k++] = d; |
---|
132 | } |
---|
133 | } |
---|
134 | return r; |
---|
135 | } |
---|
136 | |
---|
137 | function bnEquals(a) { return(this.compareTo(a)==0); } |
---|
138 | function bnMin(a) { return(this.compareTo(a)<0)?this:a; } |
---|
139 | function bnMax(a) { return(this.compareTo(a)>0)?this:a; } |
---|
140 | |
---|
141 | // (protected) r = this op a (bitwise) |
---|
142 | function bnpBitwiseTo(a,op,r) { |
---|
143 | var i, f, m = Math.min(a.t,this.t); |
---|
144 | for(i = 0; i < m; ++i) r[i] = op(this[i],a[i]); |
---|
145 | if(a.t < this.t) { |
---|
146 | f = a.s&this._DM; |
---|
147 | for(i = m; i < this.t; ++i) r[i] = op(this[i],f); |
---|
148 | r.t = this.t; |
---|
149 | } |
---|
150 | else { |
---|
151 | f = this.s&this._DM; |
---|
152 | for(i = m; i < a.t; ++i) r[i] = op(f,a[i]); |
---|
153 | r.t = a.t; |
---|
154 | } |
---|
155 | r.s = op(this.s,a.s); |
---|
156 | r._clamp(); |
---|
157 | } |
---|
158 | |
---|
159 | // (public) this & a |
---|
160 | function op_and(x,y) { return x&y; } |
---|
161 | function bnAnd(a) { var r = nbi(); this._bitwiseTo(a,op_and,r); return r; } |
---|
162 | |
---|
163 | // (public) this | a |
---|
164 | function op_or(x,y) { return x|y; } |
---|
165 | function bnOr(a) { var r = nbi(); this._bitwiseTo(a,op_or,r); return r; } |
---|
166 | |
---|
167 | // (public) this ^ a |
---|
168 | function op_xor(x,y) { return x^y; } |
---|
169 | function bnXor(a) { var r = nbi(); this._bitwiseTo(a,op_xor,r); return r; } |
---|
170 | |
---|
171 | // (public) this & ~a |
---|
172 | function op_andnot(x,y) { return x&~y; } |
---|
173 | function bnAndNot(a) { var r = nbi(); this._bitwiseTo(a,op_andnot,r); return r; } |
---|
174 | |
---|
175 | // (public) ~this |
---|
176 | function bnNot() { |
---|
177 | var r = nbi(); |
---|
178 | for(var i = 0; i < this.t; ++i) r[i] = this._DM&~this[i]; |
---|
179 | r.t = this.t; |
---|
180 | r.s = ~this.s; |
---|
181 | return r; |
---|
182 | } |
---|
183 | |
---|
184 | // (public) this << n |
---|
185 | function bnShiftLeft(n) { |
---|
186 | var r = nbi(); |
---|
187 | if(n < 0) this._rShiftTo(-n,r); else this._lShiftTo(n,r); |
---|
188 | return r; |
---|
189 | } |
---|
190 | |
---|
191 | // (public) this >> n |
---|
192 | function bnShiftRight(n) { |
---|
193 | var r = nbi(); |
---|
194 | if(n < 0) this._lShiftTo(-n,r); else this._rShiftTo(n,r); |
---|
195 | return r; |
---|
196 | } |
---|
197 | |
---|
198 | // return index of lowest 1-bit in x, x < 2^31 |
---|
199 | function lbit(x) { |
---|
200 | if(x == 0) return -1; |
---|
201 | var r = 0; |
---|
202 | if((x&0xffff) == 0) { x >>= 16; r += 16; } |
---|
203 | if((x&0xff) == 0) { x >>= 8; r += 8; } |
---|
204 | if((x&0xf) == 0) { x >>= 4; r += 4; } |
---|
205 | if((x&3) == 0) { x >>= 2; r += 2; } |
---|
206 | if((x&1) == 0) ++r; |
---|
207 | return r; |
---|
208 | } |
---|
209 | |
---|
210 | // (public) returns index of lowest 1-bit (or -1 if none) |
---|
211 | function bnGetLowestSetBit() { |
---|
212 | for(var i = 0; i < this.t; ++i) |
---|
213 | if(this[i] != 0) return i*this._DB+lbit(this[i]); |
---|
214 | if(this.s < 0) return this.t*this._DB; |
---|
215 | return -1; |
---|
216 | } |
---|
217 | |
---|
218 | // return number of 1 bits in x |
---|
219 | function cbit(x) { |
---|
220 | var r = 0; |
---|
221 | while(x != 0) { x &= x-1; ++r; } |
---|
222 | return r; |
---|
223 | } |
---|
224 | |
---|
225 | // (public) return number of set bits |
---|
226 | function bnBitCount() { |
---|
227 | var r = 0, x = this.s&this._DM; |
---|
228 | for(var i = 0; i < this.t; ++i) r += cbit(this[i]^x); |
---|
229 | return r; |
---|
230 | } |
---|
231 | |
---|
232 | // (public) true iff nth bit is set |
---|
233 | function bnTestBit(n) { |
---|
234 | var j = Math.floor(n/this._DB); |
---|
235 | if(j >= this.t) return(this.s!=0); |
---|
236 | return((this[j]&(1<<(n%this._DB)))!=0); |
---|
237 | } |
---|
238 | |
---|
239 | // (protected) this op (1<<n) |
---|
240 | function bnpChangeBit(n,op) { |
---|
241 | var r = BigInteger.ONE.shiftLeft(n); |
---|
242 | this._bitwiseTo(r,op,r); |
---|
243 | return r; |
---|
244 | } |
---|
245 | |
---|
246 | // (public) this | (1<<n) |
---|
247 | function bnSetBit(n) { return this._changeBit(n,op_or); } |
---|
248 | |
---|
249 | // (public) this & ~(1<<n) |
---|
250 | function bnClearBit(n) { return this._changeBit(n,op_andnot); } |
---|
251 | |
---|
252 | // (public) this ^ (1<<n) |
---|
253 | function bnFlipBit(n) { return this._changeBit(n,op_xor); } |
---|
254 | |
---|
255 | // (protected) r = this + a |
---|
256 | function bnpAddTo(a,r) { |
---|
257 | var i = 0, c = 0, m = Math.min(a.t,this.t); |
---|
258 | while(i < m) { |
---|
259 | c += this[i]+a[i]; |
---|
260 | r[i++] = c&this._DM; |
---|
261 | c >>= this._DB; |
---|
262 | } |
---|
263 | if(a.t < this.t) { |
---|
264 | c += a.s; |
---|
265 | while(i < this.t) { |
---|
266 | c += this[i]; |
---|
267 | r[i++] = c&this._DM; |
---|
268 | c >>= this._DB; |
---|
269 | } |
---|
270 | c += this.s; |
---|
271 | } |
---|
272 | else { |
---|
273 | c += this.s; |
---|
274 | while(i < a.t) { |
---|
275 | c += a[i]; |
---|
276 | r[i++] = c&this._DM; |
---|
277 | c >>= this._DB; |
---|
278 | } |
---|
279 | c += a.s; |
---|
280 | } |
---|
281 | r.s = (c<0)?-1:0; |
---|
282 | if(c > 0) r[i++] = c; |
---|
283 | else if(c < -1) r[i++] = this._DV+c; |
---|
284 | r.t = i; |
---|
285 | r._clamp(); |
---|
286 | } |
---|
287 | |
---|
288 | // (public) this + a |
---|
289 | function bnAdd(a) { var r = nbi(); this._addTo(a,r); return r; } |
---|
290 | |
---|
291 | // (public) this - a |
---|
292 | function bnSubtract(a) { var r = nbi(); this._subTo(a,r); return r; } |
---|
293 | |
---|
294 | // (public) this * a |
---|
295 | function bnMultiply(a) { var r = nbi(); this._multiplyTo(a,r); return r; } |
---|
296 | |
---|
297 | // (public) this / a |
---|
298 | function bnDivide(a) { var r = nbi(); this._divRemTo(a,r,null); return r; } |
---|
299 | |
---|
300 | // (public) this % a |
---|
301 | function bnRemainder(a) { var r = nbi(); this._divRemTo(a,null,r); return r; } |
---|
302 | |
---|
303 | // (public) [this/a,this%a] |
---|
304 | function bnDivideAndRemainder(a) { |
---|
305 | var q = nbi(), r = nbi(); |
---|
306 | this._divRemTo(a,q,r); |
---|
307 | return [q, r]; |
---|
308 | } |
---|
309 | |
---|
310 | // (protected) this *= n, this >= 0, 1 < n < DV |
---|
311 | function bnpDMultiply(n) { |
---|
312 | this[this.t] = this.am(0,n-1,this,0,0,this.t); |
---|
313 | ++this.t; |
---|
314 | this._clamp(); |
---|
315 | } |
---|
316 | |
---|
317 | // (protected) this += n << w words, this >= 0 |
---|
318 | function bnpDAddOffset(n,w) { |
---|
319 | while(this.t <= w) this[this.t++] = 0; |
---|
320 | this[w] += n; |
---|
321 | while(this[w] >= this._DV) { |
---|
322 | this[w] -= this._DV; |
---|
323 | if(++w >= this.t) this[this.t++] = 0; |
---|
324 | ++this[w]; |
---|
325 | } |
---|
326 | } |
---|
327 | |
---|
328 | // A "null" reducer |
---|
329 | function NullExp() {} |
---|
330 | function nNop(x) { return x; } |
---|
331 | function nMulTo(x,y,r) { x._multiplyTo(y,r); } |
---|
332 | function nSqrTo(x,r) { x._squareTo(r); } |
---|
333 | |
---|
334 | NullExp.prototype.convert = nNop; |
---|
335 | NullExp.prototype.revert = nNop; |
---|
336 | NullExp.prototype.mulTo = nMulTo; |
---|
337 | NullExp.prototype.sqrTo = nSqrTo; |
---|
338 | |
---|
339 | // (public) this^e |
---|
340 | function bnPow(e) { return this._exp(e,new NullExp()); } |
---|
341 | |
---|
342 | // (protected) r = lower n words of "this * a", a.t <= n |
---|
343 | // "this" should be the larger one if appropriate. |
---|
344 | function bnpMultiplyLowerTo(a,n,r) { |
---|
345 | var i = Math.min(this.t+a.t,n); |
---|
346 | r.s = 0; // assumes a,this >= 0 |
---|
347 | r.t = i; |
---|
348 | while(i > 0) r[--i] = 0; |
---|
349 | var j; |
---|
350 | for(j = r.t-this.t; i < j; ++i) r[i+this.t] = this.am(0,a[i],r,i,0,this.t); |
---|
351 | for(j = Math.min(a.t,n); i < j; ++i) this.am(0,a[i],r,i,0,n-i); |
---|
352 | r._clamp(); |
---|
353 | } |
---|
354 | |
---|
355 | // (protected) r = "this * a" without lower n words, n > 0 |
---|
356 | // "this" should be the larger one if appropriate. |
---|
357 | function bnpMultiplyUpperTo(a,n,r) { |
---|
358 | --n; |
---|
359 | var i = r.t = this.t+a.t-n; |
---|
360 | r.s = 0; // assumes a,this >= 0 |
---|
361 | while(--i >= 0) r[i] = 0; |
---|
362 | for(i = Math.max(n-this.t,0); i < a.t; ++i) |
---|
363 | r[this.t+i-n] = this.am(n-i,a[i],r,0,0,this.t+i-n); |
---|
364 | r._clamp(); |
---|
365 | r._drShiftTo(1,r); |
---|
366 | } |
---|
367 | |
---|
368 | // Barrett modular reduction |
---|
369 | function Barrett(m) { |
---|
370 | // setup Barrett |
---|
371 | this.r2 = nbi(); |
---|
372 | this.q3 = nbi(); |
---|
373 | BigInteger.ONE._dlShiftTo(2*m.t,this.r2); |
---|
374 | this.mu = this.r2.divide(m); |
---|
375 | this.m = m; |
---|
376 | } |
---|
377 | |
---|
378 | function barrettConvert(x) { |
---|
379 | if(x.s < 0 || x.t > 2*this.m.t) return x.mod(this.m); |
---|
380 | else if(x.compareTo(this.m) < 0) return x; |
---|
381 | else { var r = nbi(); x._copyTo(r); this.reduce(r); return r; } |
---|
382 | } |
---|
383 | |
---|
384 | function barrettRevert(x) { return x; } |
---|
385 | |
---|
386 | // x = x mod m (HAC 14.42) |
---|
387 | function barrettReduce(x) { |
---|
388 | x._drShiftTo(this.m.t-1,this.r2); |
---|
389 | if(x.t > this.m.t+1) { x.t = this.m.t+1; x._clamp(); } |
---|
390 | this.mu._multiplyUpperTo(this.r2,this.m.t+1,this.q3); |
---|
391 | this.m._multiplyLowerTo(this.q3,this.m.t+1,this.r2); |
---|
392 | while(x.compareTo(this.r2) < 0) x._dAddOffset(1,this.m.t+1); |
---|
393 | x._subTo(this.r2,x); |
---|
394 | while(x.compareTo(this.m) >= 0) x._subTo(this.m,x); |
---|
395 | } |
---|
396 | |
---|
397 | // r = x^2 mod m; x != r |
---|
398 | function barrettSqrTo(x,r) { x._squareTo(r); this.reduce(r); } |
---|
399 | |
---|
400 | // r = x*y mod m; x,y != r |
---|
401 | function barrettMulTo(x,y,r) { x._multiplyTo(y,r); this.reduce(r); } |
---|
402 | |
---|
403 | Barrett.prototype.convert = barrettConvert; |
---|
404 | Barrett.prototype.revert = barrettRevert; |
---|
405 | Barrett.prototype.reduce = barrettReduce; |
---|
406 | Barrett.prototype.mulTo = barrettMulTo; |
---|
407 | Barrett.prototype.sqrTo = barrettSqrTo; |
---|
408 | |
---|
409 | // (public) this^e % m (HAC 14.85) |
---|
410 | function bnModPow(e,m) { |
---|
411 | var i = e.bitLength(), k, r = nbv(1), z; |
---|
412 | if(i <= 0) return r; |
---|
413 | else if(i < 18) k = 1; |
---|
414 | else if(i < 48) k = 3; |
---|
415 | else if(i < 144) k = 4; |
---|
416 | else if(i < 768) k = 5; |
---|
417 | else k = 6; |
---|
418 | if(i < 8) |
---|
419 | z = new Classic(m); |
---|
420 | else if(m._isEven()) |
---|
421 | z = new Barrett(m); |
---|
422 | else |
---|
423 | z = new Montgomery(m); |
---|
424 | |
---|
425 | // precomputation |
---|
426 | var g = [], n = 3, k1 = k-1, km = (1<<k)-1; |
---|
427 | g[1] = z.convert(this); |
---|
428 | if(k > 1) { |
---|
429 | var g2 = nbi(); |
---|
430 | z.sqrTo(g[1],g2); |
---|
431 | while(n <= km) { |
---|
432 | g[n] = nbi(); |
---|
433 | z.mulTo(g2,g[n-2],g[n]); |
---|
434 | n += 2; |
---|
435 | } |
---|
436 | } |
---|
437 | |
---|
438 | var j = e.t-1, w, is1 = true, r2 = nbi(), t; |
---|
439 | i = nbits(e[j])-1; |
---|
440 | while(j >= 0) { |
---|
441 | if(i >= k1) w = (e[j]>>(i-k1))&km; |
---|
442 | else { |
---|
443 | w = (e[j]&((1<<(i+1))-1))<<(k1-i); |
---|
444 | if(j > 0) w |= e[j-1]>>(this._DB+i-k1); |
---|
445 | } |
---|
446 | |
---|
447 | n = k; |
---|
448 | while((w&1) == 0) { w >>= 1; --n; } |
---|
449 | if((i -= n) < 0) { i += this._DB; --j; } |
---|
450 | if(is1) { // ret == 1, don't bother squaring or multiplying it |
---|
451 | g[w]._copyTo(r); |
---|
452 | is1 = false; |
---|
453 | } |
---|
454 | else { |
---|
455 | while(n > 1) { z.sqrTo(r,r2); z.sqrTo(r2,r); n -= 2; } |
---|
456 | if(n > 0) z.sqrTo(r,r2); else { t = r; r = r2; r2 = t; } |
---|
457 | z.mulTo(r2,g[w],r); |
---|
458 | } |
---|
459 | |
---|
460 | while(j >= 0 && (e[j]&(1<<i)) == 0) { |
---|
461 | z.sqrTo(r,r2); t = r; r = r2; r2 = t; |
---|
462 | if(--i < 0) { i = this._DB-1; --j; } |
---|
463 | } |
---|
464 | } |
---|
465 | return z.revert(r); |
---|
466 | } |
---|
467 | |
---|
468 | // (public) gcd(this,a) (HAC 14.54) |
---|
469 | function bnGCD(a) { |
---|
470 | var x = (this.s<0)?this.negate():this.clone(); |
---|
471 | var y = (a.s<0)?a.negate():a.clone(); |
---|
472 | if(x.compareTo(y) < 0) { var t = x; x = y; y = t; } |
---|
473 | var i = x.getLowestSetBit(), g = y.getLowestSetBit(); |
---|
474 | if(g < 0) return x; |
---|
475 | if(i < g) g = i; |
---|
476 | if(g > 0) { |
---|
477 | x._rShiftTo(g,x); |
---|
478 | y._rShiftTo(g,y); |
---|
479 | } |
---|
480 | while(x.signum() > 0) { |
---|
481 | if((i = x.getLowestSetBit()) > 0) x._rShiftTo(i,x); |
---|
482 | if((i = y.getLowestSetBit()) > 0) y._rShiftTo(i,y); |
---|
483 | if(x.compareTo(y) >= 0) { |
---|
484 | x._subTo(y,x); |
---|
485 | x._rShiftTo(1,x); |
---|
486 | } |
---|
487 | else { |
---|
488 | y._subTo(x,y); |
---|
489 | y._rShiftTo(1,y); |
---|
490 | } |
---|
491 | } |
---|
492 | if(g > 0) y._lShiftTo(g,y); |
---|
493 | return y; |
---|
494 | } |
---|
495 | |
---|
496 | // (protected) this % n, n < 2^26 |
---|
497 | function bnpModInt(n) { |
---|
498 | if(n <= 0) return 0; |
---|
499 | var d = this._DV%n, r = (this.s<0)?n-1:0; |
---|
500 | if(this.t > 0) |
---|
501 | if(d == 0) r = this[0]%n; |
---|
502 | else for(var i = this.t-1; i >= 0; --i) r = (d*r+this[i])%n; |
---|
503 | return r; |
---|
504 | } |
---|
505 | |
---|
506 | // (public) 1/this % m (HAC 14.61) |
---|
507 | function bnModInverse(m) { |
---|
508 | var ac = m._isEven(); |
---|
509 | if((this._isEven() && ac) || m.signum() == 0) return BigInteger.ZERO; |
---|
510 | var u = m.clone(), v = this.clone(); |
---|
511 | var a = nbv(1), b = nbv(0), c = nbv(0), d = nbv(1); |
---|
512 | while(u.signum() != 0) { |
---|
513 | while(u._isEven()) { |
---|
514 | u._rShiftTo(1,u); |
---|
515 | if(ac) { |
---|
516 | if(!a._isEven() || !b._isEven()) { a._addTo(this,a); b._subTo(m,b); } |
---|
517 | a._rShiftTo(1,a); |
---|
518 | } |
---|
519 | else if(!b._isEven()) b._subTo(m,b); |
---|
520 | b._rShiftTo(1,b); |
---|
521 | } |
---|
522 | while(v._isEven()) { |
---|
523 | v._rShiftTo(1,v); |
---|
524 | if(ac) { |
---|
525 | if(!c._isEven() || !d._isEven()) { c._addTo(this,c); d._subTo(m,d); } |
---|
526 | c._rShiftTo(1,c); |
---|
527 | } |
---|
528 | else if(!d._isEven()) d._subTo(m,d); |
---|
529 | d._rShiftTo(1,d); |
---|
530 | } |
---|
531 | if(u.compareTo(v) >= 0) { |
---|
532 | u._subTo(v,u); |
---|
533 | if(ac) a._subTo(c,a); |
---|
534 | b._subTo(d,b); |
---|
535 | } |
---|
536 | else { |
---|
537 | v._subTo(u,v); |
---|
538 | if(ac) c._subTo(a,c); |
---|
539 | d._subTo(b,d); |
---|
540 | } |
---|
541 | } |
---|
542 | if(v.compareTo(BigInteger.ONE) != 0) return BigInteger.ZERO; |
---|
543 | if(d.compareTo(m) >= 0) return d.subtract(m); |
---|
544 | if(d.signum() < 0) d._addTo(m,d); else return d; |
---|
545 | if(d.signum() < 0) return d.add(m); else return d; |
---|
546 | } |
---|
547 | |
---|
548 | var lowprimes = [2,3,5,7,11,13,17,19,23,29,31,37,41,43,47,53,59,61,67,71,73,79,83,89,97,101,103,107,109,113,127,131,137,139,149,151,157,163,167,173,179,181,191,193,197,199,211,223,227,229,233,239,241,251,257,263,269,271,277,281,283,293,307,311,313,317,331,337,347,349,353,359,367,373,379,383,389,397,401,409,419,421,431,433,439,443,449,457,461,463,467,479,487,491,499,503,509]; |
---|
549 | var lplim = (1<<26)/lowprimes[lowprimes.length-1]; |
---|
550 | |
---|
551 | // (public) test primality with certainty >= 1-.5^t |
---|
552 | function bnIsProbablePrime(t) { |
---|
553 | var i, x = this.abs(); |
---|
554 | if(x.t == 1 && x[0] <= lowprimes[lowprimes.length-1]) { |
---|
555 | for(i = 0; i < lowprimes.length; ++i) |
---|
556 | if(x[0] == lowprimes[i]) return true; |
---|
557 | return false; |
---|
558 | } |
---|
559 | if(x._isEven()) return false; |
---|
560 | i = 1; |
---|
561 | while(i < lowprimes.length) { |
---|
562 | var m = lowprimes[i], j = i+1; |
---|
563 | while(j < lowprimes.length && m < lplim) m *= lowprimes[j++]; |
---|
564 | m = x._modInt(m); |
---|
565 | while(i < j) if(m%lowprimes[i++] == 0) return false; |
---|
566 | } |
---|
567 | return x._millerRabin(t); |
---|
568 | } |
---|
569 | |
---|
570 | // (protected) true if probably prime (HAC 4.24, Miller-Rabin) |
---|
571 | function bnpMillerRabin(t) { |
---|
572 | var n1 = this.subtract(BigInteger.ONE); |
---|
573 | var k = n1.getLowestSetBit(); |
---|
574 | if(k <= 0) return false; |
---|
575 | var r = n1.shiftRight(k); |
---|
576 | t = (t+1)>>1; |
---|
577 | if(t > lowprimes.length) t = lowprimes.length; |
---|
578 | var a = nbi(); |
---|
579 | for(var i = 0; i < t; ++i) { |
---|
580 | a._fromInt(lowprimes[i]); |
---|
581 | var y = a.modPow(r,this); |
---|
582 | if(y.compareTo(BigInteger.ONE) != 0 && y.compareTo(n1) != 0) { |
---|
583 | var j = 1; |
---|
584 | while(j++ < k && y.compareTo(n1) != 0) { |
---|
585 | y = y.modPowInt(2,this); |
---|
586 | if(y.compareTo(BigInteger.ONE) == 0) return false; |
---|
587 | } |
---|
588 | if(y.compareTo(n1) != 0) return false; |
---|
589 | } |
---|
590 | } |
---|
591 | return true; |
---|
592 | } |
---|
593 | |
---|
594 | dojo.extend(BigInteger, { |
---|
595 | // protected |
---|
596 | _chunkSize: bnpChunkSize, |
---|
597 | _toRadix: bnpToRadix, |
---|
598 | _fromRadix: bnpFromRadix, |
---|
599 | _fromNumber: bnpFromNumber, |
---|
600 | _bitwiseTo: bnpBitwiseTo, |
---|
601 | _changeBit: bnpChangeBit, |
---|
602 | _addTo: bnpAddTo, |
---|
603 | _dMultiply: bnpDMultiply, |
---|
604 | _dAddOffset: bnpDAddOffset, |
---|
605 | _multiplyLowerTo: bnpMultiplyLowerTo, |
---|
606 | _multiplyUpperTo: bnpMultiplyUpperTo, |
---|
607 | _modInt: bnpModInt, |
---|
608 | _millerRabin: bnpMillerRabin, |
---|
609 | |
---|
610 | // public |
---|
611 | clone: bnClone, |
---|
612 | intValue: bnIntValue, |
---|
613 | byteValue: bnByteValue, |
---|
614 | shortValue: bnShortValue, |
---|
615 | signum: bnSigNum, |
---|
616 | toByteArray: bnToByteArray, |
---|
617 | equals: bnEquals, |
---|
618 | min: bnMin, |
---|
619 | max: bnMax, |
---|
620 | and: bnAnd, |
---|
621 | or: bnOr, |
---|
622 | xor: bnXor, |
---|
623 | andNot: bnAndNot, |
---|
624 | not: bnNot, |
---|
625 | shiftLeft: bnShiftLeft, |
---|
626 | shiftRight: bnShiftRight, |
---|
627 | getLowestSetBit: bnGetLowestSetBit, |
---|
628 | bitCount: bnBitCount, |
---|
629 | testBit: bnTestBit, |
---|
630 | setBit: bnSetBit, |
---|
631 | clearBit: bnClearBit, |
---|
632 | flipBit: bnFlipBit, |
---|
633 | add: bnAdd, |
---|
634 | subtract: bnSubtract, |
---|
635 | multiply: bnMultiply, |
---|
636 | divide: bnDivide, |
---|
637 | remainder: bnRemainder, |
---|
638 | divideAndRemainder: bnDivideAndRemainder, |
---|
639 | modPow: bnModPow, |
---|
640 | modInverse: bnModInverse, |
---|
641 | pow: bnPow, |
---|
642 | gcd: bnGCD, |
---|
643 | isProbablePrime: bnIsProbablePrime |
---|
644 | }); |
---|
645 | |
---|
646 | // BigInteger interfaces not implemented in jsbn: |
---|
647 | |
---|
648 | // BigInteger(int signum, byte[] magnitude) |
---|
649 | // double doubleValue() |
---|
650 | // float floatValue() |
---|
651 | // int hashCode() |
---|
652 | // long longValue() |
---|
653 | // static BigInteger valueOf(long val) |
---|
654 | |
---|
655 | return dojox.math.BigInteger; |
---|
656 | }); |
---|