1 | // AMD-ID "dojox/math/BigInteger" |
---|
2 | define(["dojo", "dojox"], function(dojo, dojox) { |
---|
3 | |
---|
4 | dojo.getObject("math.BigInteger", true, dojox); |
---|
5 | dojo.experimental("dojox.math.BigInteger"); |
---|
6 | |
---|
7 | // Contributed under CLA by Tom Wu <tjw@cs.Stanford.EDU> |
---|
8 | // See http://www-cs-students.stanford.edu/~tjw/jsbn/ for details. |
---|
9 | |
---|
10 | // Basic JavaScript BN library - subset useful for RSA encryption. |
---|
11 | // The API for dojox.math.BigInteger closely resembles that of the java.math.BigInteger class in Java. |
---|
12 | |
---|
13 | // Bits per digit |
---|
14 | var dbits; |
---|
15 | |
---|
16 | // JavaScript engine analysis |
---|
17 | var canary = 0xdeadbeefcafe; |
---|
18 | var j_lm = ((canary&0xffffff)==0xefcafe); |
---|
19 | |
---|
20 | // (public) Constructor |
---|
21 | function BigInteger(a,b,c) { |
---|
22 | if(a != null) |
---|
23 | if("number" == typeof a) this._fromNumber(a,b,c); |
---|
24 | else if(!b && "string" != typeof a) this._fromString(a,256); |
---|
25 | else this._fromString(a,b); |
---|
26 | } |
---|
27 | |
---|
28 | // return new, unset BigInteger |
---|
29 | function nbi() { return new BigInteger(null); } |
---|
30 | |
---|
31 | // am: Compute w_j += (x*this_i), propagate carries, |
---|
32 | // c is initial carry, returns final carry. |
---|
33 | // c < 3*dvalue, x < 2*dvalue, this_i < dvalue |
---|
34 | // We need to select the fastest one that works in this environment. |
---|
35 | |
---|
36 | // am1: use a single mult and divide to get the high bits, |
---|
37 | // max digit bits should be 26 because |
---|
38 | // max internal value = 2*dvalue^2-2*dvalue (< 2^53) |
---|
39 | function am1(i,x,w,j,c,n) { |
---|
40 | while(--n >= 0) { |
---|
41 | var v = x*this[i++]+w[j]+c; |
---|
42 | c = Math.floor(v/0x4000000); |
---|
43 | w[j++] = v&0x3ffffff; |
---|
44 | } |
---|
45 | return c; |
---|
46 | } |
---|
47 | // am2 avoids a big mult-and-extract completely. |
---|
48 | // Max digit bits should be <= 30 because we do bitwise ops |
---|
49 | // on values up to 2*hdvalue^2-hdvalue-1 (< 2^31) |
---|
50 | function am2(i,x,w,j,c,n) { |
---|
51 | var xl = x&0x7fff, xh = x>>15; |
---|
52 | while(--n >= 0) { |
---|
53 | var l = this[i]&0x7fff; |
---|
54 | var h = this[i++]>>15; |
---|
55 | var m = xh*l+h*xl; |
---|
56 | l = xl*l+((m&0x7fff)<<15)+w[j]+(c&0x3fffffff); |
---|
57 | c = (l>>>30)+(m>>>15)+xh*h+(c>>>30); |
---|
58 | w[j++] = l&0x3fffffff; |
---|
59 | } |
---|
60 | return c; |
---|
61 | } |
---|
62 | // Alternately, set max digit bits to 28 since some |
---|
63 | // browsers slow down when dealing with 32-bit numbers. |
---|
64 | function am3(i,x,w,j,c,n) { |
---|
65 | var xl = x&0x3fff, xh = x>>14; |
---|
66 | while(--n >= 0) { |
---|
67 | var l = this[i]&0x3fff; |
---|
68 | var h = this[i++]>>14; |
---|
69 | var m = xh*l+h*xl; |
---|
70 | l = xl*l+((m&0x3fff)<<14)+w[j]+c; |
---|
71 | c = (l>>28)+(m>>14)+xh*h; |
---|
72 | w[j++] = l&0xfffffff; |
---|
73 | } |
---|
74 | return c; |
---|
75 | } |
---|
76 | if(j_lm && (navigator.appName == "Microsoft Internet Explorer")) { |
---|
77 | BigInteger.prototype.am = am2; |
---|
78 | dbits = 30; |
---|
79 | } |
---|
80 | else if(j_lm && (navigator.appName != "Netscape")) { |
---|
81 | BigInteger.prototype.am = am1; |
---|
82 | dbits = 26; |
---|
83 | } |
---|
84 | else { // Mozilla/Netscape seems to prefer am3 |
---|
85 | BigInteger.prototype.am = am3; |
---|
86 | dbits = 28; |
---|
87 | } |
---|
88 | |
---|
89 | var BI_FP = 52; |
---|
90 | |
---|
91 | // Digit conversions |
---|
92 | var BI_RM = "0123456789abcdefghijklmnopqrstuvwxyz"; |
---|
93 | var BI_RC = []; |
---|
94 | var rr,vv; |
---|
95 | rr = "0".charCodeAt(0); |
---|
96 | for(vv = 0; vv <= 9; ++vv) BI_RC[rr++] = vv; |
---|
97 | rr = "a".charCodeAt(0); |
---|
98 | for(vv = 10; vv < 36; ++vv) BI_RC[rr++] = vv; |
---|
99 | rr = "A".charCodeAt(0); |
---|
100 | for(vv = 10; vv < 36; ++vv) BI_RC[rr++] = vv; |
---|
101 | |
---|
102 | function int2char(n) { return BI_RM.charAt(n); } |
---|
103 | function intAt(s,i) { |
---|
104 | var c = BI_RC[s.charCodeAt(i)]; |
---|
105 | return (c==null)?-1:c; |
---|
106 | } |
---|
107 | |
---|
108 | // (protected) copy this to r |
---|
109 | function bnpCopyTo(r) { |
---|
110 | for(var i = this.t-1; i >= 0; --i) r[i] = this[i]; |
---|
111 | r.t = this.t; |
---|
112 | r.s = this.s; |
---|
113 | } |
---|
114 | |
---|
115 | // (protected) set from integer value x, -DV <= x < DV |
---|
116 | function bnpFromInt(x) { |
---|
117 | this.t = 1; |
---|
118 | this.s = (x<0)?-1:0; |
---|
119 | if(x > 0) this[0] = x; |
---|
120 | else if(x < -1) this[0] = x+_DV; |
---|
121 | else this.t = 0; |
---|
122 | } |
---|
123 | |
---|
124 | // return bigint initialized to value |
---|
125 | function nbv(i) { var r = nbi(); r._fromInt(i); return r; } |
---|
126 | |
---|
127 | // (protected) set from string and radix |
---|
128 | function bnpFromString(s,b) { |
---|
129 | var k; |
---|
130 | if(b == 16) k = 4; |
---|
131 | else if(b == 8) k = 3; |
---|
132 | else if(b == 256) k = 8; // byte array |
---|
133 | else if(b == 2) k = 1; |
---|
134 | else if(b == 32) k = 5; |
---|
135 | else if(b == 4) k = 2; |
---|
136 | else { this.fromRadix(s,b); return; } |
---|
137 | this.t = 0; |
---|
138 | this.s = 0; |
---|
139 | var i = s.length, mi = false, sh = 0; |
---|
140 | while(--i >= 0) { |
---|
141 | var x = (k==8)?s[i]&0xff:intAt(s,i); |
---|
142 | if(x < 0) { |
---|
143 | if(s.charAt(i) == "-") mi = true; |
---|
144 | continue; |
---|
145 | } |
---|
146 | mi = false; |
---|
147 | if(sh == 0) |
---|
148 | this[this.t++] = x; |
---|
149 | else if(sh+k > this._DB) { |
---|
150 | this[this.t-1] |= (x&((1<<(this._DB-sh))-1))<<sh; |
---|
151 | this[this.t++] = (x>>(this._DB-sh)); |
---|
152 | } |
---|
153 | else |
---|
154 | this[this.t-1] |= x<<sh; |
---|
155 | sh += k; |
---|
156 | if(sh >= this._DB) sh -= this._DB; |
---|
157 | } |
---|
158 | if(k == 8 && (s[0]&0x80) != 0) { |
---|
159 | this.s = -1; |
---|
160 | if(sh > 0) this[this.t-1] |= ((1<<(this._DB-sh))-1)<<sh; |
---|
161 | } |
---|
162 | this._clamp(); |
---|
163 | if(mi) BigInteger.ZERO._subTo(this,this); |
---|
164 | } |
---|
165 | |
---|
166 | // (protected) clamp off excess high words |
---|
167 | function bnpClamp() { |
---|
168 | var c = this.s&this._DM; |
---|
169 | while(this.t > 0 && this[this.t-1] == c) --this.t; |
---|
170 | } |
---|
171 | |
---|
172 | // (public) return string representation in given radix |
---|
173 | function bnToString(b) { |
---|
174 | if(this.s < 0) return "-"+this.negate().toString(b); |
---|
175 | var k; |
---|
176 | if(b == 16) k = 4; |
---|
177 | else if(b == 8) k = 3; |
---|
178 | else if(b == 2) k = 1; |
---|
179 | else if(b == 32) k = 5; |
---|
180 | else if(b == 4) k = 2; |
---|
181 | else return this._toRadix(b); |
---|
182 | var km = (1<<k)-1, d, m = false, r = "", i = this.t; |
---|
183 | var p = this._DB-(i*this._DB)%k; |
---|
184 | if(i-- > 0) { |
---|
185 | if(p < this._DB && (d = this[i]>>p) > 0) { m = true; r = int2char(d); } |
---|
186 | while(i >= 0) { |
---|
187 | if(p < k) { |
---|
188 | d = (this[i]&((1<<p)-1))<<(k-p); |
---|
189 | d |= this[--i]>>(p+=this._DB-k); |
---|
190 | } |
---|
191 | else { |
---|
192 | d = (this[i]>>(p-=k))&km; |
---|
193 | if(p <= 0) { p += this._DB; --i; } |
---|
194 | } |
---|
195 | if(d > 0) m = true; |
---|
196 | if(m) r += int2char(d); |
---|
197 | } |
---|
198 | } |
---|
199 | return m?r:"0"; |
---|
200 | } |
---|
201 | |
---|
202 | // (public) -this |
---|
203 | function bnNegate() { var r = nbi(); BigInteger.ZERO._subTo(this,r); return r; } |
---|
204 | |
---|
205 | // (public) |this| |
---|
206 | function bnAbs() { return (this.s<0)?this.negate():this; } |
---|
207 | |
---|
208 | // (public) return + if this > a, - if this < a, 0 if equal |
---|
209 | function bnCompareTo(a) { |
---|
210 | var r = this.s-a.s; |
---|
211 | if(r) return r; |
---|
212 | var i = this.t; |
---|
213 | r = i-a.t; |
---|
214 | if(r) return r; |
---|
215 | while(--i >= 0) if((r = this[i] - a[i])) return r; |
---|
216 | return 0; |
---|
217 | } |
---|
218 | |
---|
219 | // returns bit length of the integer x |
---|
220 | function nbits(x) { |
---|
221 | var r = 1, t; |
---|
222 | if((t=x>>>16)) { x = t; r += 16; } |
---|
223 | if((t=x>>8)) { x = t; r += 8; } |
---|
224 | if((t=x>>4)) { x = t; r += 4; } |
---|
225 | if((t=x>>2)) { x = t; r += 2; } |
---|
226 | if((t=x>>1)) { x = t; r += 1; } |
---|
227 | return r; |
---|
228 | } |
---|
229 | |
---|
230 | // (public) return the number of bits in "this" |
---|
231 | function bnBitLength() { |
---|
232 | if(this.t <= 0) return 0; |
---|
233 | return this._DB*(this.t-1)+nbits(this[this.t-1]^(this.s&this._DM)); |
---|
234 | } |
---|
235 | |
---|
236 | // (protected) r = this << n*DB |
---|
237 | function bnpDLShiftTo(n,r) { |
---|
238 | var i; |
---|
239 | for(i = this.t-1; i >= 0; --i) r[i+n] = this[i]; |
---|
240 | for(i = n-1; i >= 0; --i) r[i] = 0; |
---|
241 | r.t = this.t+n; |
---|
242 | r.s = this.s; |
---|
243 | } |
---|
244 | |
---|
245 | // (protected) r = this >> n*DB |
---|
246 | function bnpDRShiftTo(n,r) { |
---|
247 | for(var i = n; i < this.t; ++i) r[i-n] = this[i]; |
---|
248 | r.t = Math.max(this.t-n,0); |
---|
249 | r.s = this.s; |
---|
250 | } |
---|
251 | |
---|
252 | // (protected) r = this << n |
---|
253 | function bnpLShiftTo(n,r) { |
---|
254 | var bs = n%this._DB; |
---|
255 | var cbs = this._DB-bs; |
---|
256 | var bm = (1<<cbs)-1; |
---|
257 | var ds = Math.floor(n/this._DB), c = (this.s<<bs)&this._DM, i; |
---|
258 | for(i = this.t-1; i >= 0; --i) { |
---|
259 | r[i+ds+1] = (this[i]>>cbs)|c; |
---|
260 | c = (this[i]&bm)<<bs; |
---|
261 | } |
---|
262 | for(i = ds-1; i >= 0; --i) r[i] = 0; |
---|
263 | r[ds] = c; |
---|
264 | r.t = this.t+ds+1; |
---|
265 | r.s = this.s; |
---|
266 | r._clamp(); |
---|
267 | } |
---|
268 | |
---|
269 | // (protected) r = this >> n |
---|
270 | function bnpRShiftTo(n,r) { |
---|
271 | r.s = this.s; |
---|
272 | var ds = Math.floor(n/this._DB); |
---|
273 | if(ds >= this.t) { r.t = 0; return; } |
---|
274 | var bs = n%this._DB; |
---|
275 | var cbs = this._DB-bs; |
---|
276 | var bm = (1<<bs)-1; |
---|
277 | r[0] = this[ds]>>bs; |
---|
278 | for(var i = ds+1; i < this.t; ++i) { |
---|
279 | r[i-ds-1] |= (this[i]&bm)<<cbs; |
---|
280 | r[i-ds] = this[i]>>bs; |
---|
281 | } |
---|
282 | if(bs > 0) r[this.t-ds-1] |= (this.s&bm)<<cbs; |
---|
283 | r.t = this.t-ds; |
---|
284 | r._clamp(); |
---|
285 | } |
---|
286 | |
---|
287 | // (protected) r = this - a |
---|
288 | function bnpSubTo(a,r) { |
---|
289 | var i = 0, c = 0, m = Math.min(a.t,this.t); |
---|
290 | while(i < m) { |
---|
291 | c += this[i]-a[i]; |
---|
292 | r[i++] = c&this._DM; |
---|
293 | c >>= this._DB; |
---|
294 | } |
---|
295 | if(a.t < this.t) { |
---|
296 | c -= a.s; |
---|
297 | while(i < this.t) { |
---|
298 | c += this[i]; |
---|
299 | r[i++] = c&this._DM; |
---|
300 | c >>= this._DB; |
---|
301 | } |
---|
302 | c += this.s; |
---|
303 | } |
---|
304 | else { |
---|
305 | c += this.s; |
---|
306 | while(i < a.t) { |
---|
307 | c -= a[i]; |
---|
308 | r[i++] = c&this._DM; |
---|
309 | c >>= this._DB; |
---|
310 | } |
---|
311 | c -= a.s; |
---|
312 | } |
---|
313 | r.s = (c<0)?-1:0; |
---|
314 | if(c < -1) r[i++] = this._DV+c; |
---|
315 | else if(c > 0) r[i++] = c; |
---|
316 | r.t = i; |
---|
317 | r._clamp(); |
---|
318 | } |
---|
319 | |
---|
320 | // (protected) r = this * a, r != this,a (HAC 14.12) |
---|
321 | // "this" should be the larger one if appropriate. |
---|
322 | function bnpMultiplyTo(a,r) { |
---|
323 | var x = this.abs(), y = a.abs(); |
---|
324 | var i = x.t; |
---|
325 | r.t = i+y.t; |
---|
326 | while(--i >= 0) r[i] = 0; |
---|
327 | for(i = 0; i < y.t; ++i) r[i+x.t] = x.am(0,y[i],r,i,0,x.t); |
---|
328 | r.s = 0; |
---|
329 | r._clamp(); |
---|
330 | if(this.s != a.s) BigInteger.ZERO._subTo(r,r); |
---|
331 | } |
---|
332 | |
---|
333 | // (protected) r = this^2, r != this (HAC 14.16) |
---|
334 | function bnpSquareTo(r) { |
---|
335 | var x = this.abs(); |
---|
336 | var i = r.t = 2*x.t; |
---|
337 | while(--i >= 0) r[i] = 0; |
---|
338 | for(i = 0; i < x.t-1; ++i) { |
---|
339 | var c = x.am(i,x[i],r,2*i,0,1); |
---|
340 | if((r[i+x.t]+=x.am(i+1,2*x[i],r,2*i+1,c,x.t-i-1)) >= x._DV) { |
---|
341 | r[i+x.t] -= x._DV; |
---|
342 | r[i+x.t+1] = 1; |
---|
343 | } |
---|
344 | } |
---|
345 | if(r.t > 0) r[r.t-1] += x.am(i,x[i],r,2*i,0,1); |
---|
346 | r.s = 0; |
---|
347 | r._clamp(); |
---|
348 | } |
---|
349 | |
---|
350 | // (protected) divide this by m, quotient and remainder to q, r (HAC 14.20) |
---|
351 | // r != q, this != m. q or r may be null. |
---|
352 | function bnpDivRemTo(m,q,r) { |
---|
353 | var pm = m.abs(); |
---|
354 | if(pm.t <= 0) return; |
---|
355 | var pt = this.abs(); |
---|
356 | if(pt.t < pm.t) { |
---|
357 | if(q != null) q._fromInt(0); |
---|
358 | if(r != null) this._copyTo(r); |
---|
359 | return; |
---|
360 | } |
---|
361 | if(r == null) r = nbi(); |
---|
362 | var y = nbi(), ts = this.s, ms = m.s; |
---|
363 | var nsh = this._DB-nbits(pm[pm.t-1]); // normalize modulus |
---|
364 | if(nsh > 0) { pm._lShiftTo(nsh,y); pt._lShiftTo(nsh,r); } |
---|
365 | else { pm._copyTo(y); pt._copyTo(r); } |
---|
366 | var ys = y.t; |
---|
367 | var y0 = y[ys-1]; |
---|
368 | if(y0 == 0) return; |
---|
369 | var yt = y0*(1<<this._F1)+((ys>1)?y[ys-2]>>this._F2:0); |
---|
370 | var d1 = this._FV/yt, d2 = (1<<this._F1)/yt, e = 1<<this._F2; |
---|
371 | var i = r.t, j = i-ys, t = (q==null)?nbi():q; |
---|
372 | y._dlShiftTo(j,t); |
---|
373 | if(r.compareTo(t) >= 0) { |
---|
374 | r[r.t++] = 1; |
---|
375 | r._subTo(t,r); |
---|
376 | } |
---|
377 | BigInteger.ONE._dlShiftTo(ys,t); |
---|
378 | t._subTo(y,y); // "negative" y so we can replace sub with am later |
---|
379 | while(y.t < ys) y[y.t++] = 0; |
---|
380 | while(--j >= 0) { |
---|
381 | // Estimate quotient digit |
---|
382 | var qd = (r[--i]==y0)?this._DM:Math.floor(r[i]*d1+(r[i-1]+e)*d2); |
---|
383 | if((r[i]+=y.am(0,qd,r,j,0,ys)) < qd) { // Try it out |
---|
384 | y._dlShiftTo(j,t); |
---|
385 | r._subTo(t,r); |
---|
386 | while(r[i] < --qd) r._subTo(t,r); |
---|
387 | } |
---|
388 | } |
---|
389 | if(q != null) { |
---|
390 | r._drShiftTo(ys,q); |
---|
391 | if(ts != ms) BigInteger.ZERO._subTo(q,q); |
---|
392 | } |
---|
393 | r.t = ys; |
---|
394 | r._clamp(); |
---|
395 | if(nsh > 0) r._rShiftTo(nsh,r); // Denormalize remainder |
---|
396 | if(ts < 0) BigInteger.ZERO._subTo(r,r); |
---|
397 | } |
---|
398 | |
---|
399 | // (public) this mod a |
---|
400 | function bnMod(a) { |
---|
401 | var r = nbi(); |
---|
402 | this.abs()._divRemTo(a,null,r); |
---|
403 | if(this.s < 0 && r.compareTo(BigInteger.ZERO) > 0) a._subTo(r,r); |
---|
404 | return r; |
---|
405 | } |
---|
406 | |
---|
407 | // Modular reduction using "classic" algorithm |
---|
408 | function Classic(m) { this.m = m; } |
---|
409 | function cConvert(x) { |
---|
410 | if(x.s < 0 || x.compareTo(this.m) >= 0) return x.mod(this.m); |
---|
411 | else return x; |
---|
412 | } |
---|
413 | function cRevert(x) { return x; } |
---|
414 | function cReduce(x) { x._divRemTo(this.m,null,x); } |
---|
415 | function cMulTo(x,y,r) { x._multiplyTo(y,r); this.reduce(r); } |
---|
416 | function cSqrTo(x,r) { x._squareTo(r); this.reduce(r); } |
---|
417 | |
---|
418 | dojo.extend(Classic, { |
---|
419 | convert: cConvert, |
---|
420 | revert: cRevert, |
---|
421 | reduce: cReduce, |
---|
422 | mulTo: cMulTo, |
---|
423 | sqrTo: cSqrTo |
---|
424 | }); |
---|
425 | |
---|
426 | // (protected) return "-1/this % 2^DB"; useful for Mont. reduction |
---|
427 | // justification: |
---|
428 | // xy == 1 (mod m) |
---|
429 | // xy = 1+km |
---|
430 | // xy(2-xy) = (1+km)(1-km) |
---|
431 | // x[y(2-xy)] = 1-k^2m^2 |
---|
432 | // x[y(2-xy)] == 1 (mod m^2) |
---|
433 | // if y is 1/x mod m, then y(2-xy) is 1/x mod m^2 |
---|
434 | // should reduce x and y(2-xy) by m^2 at each step to keep size bounded. |
---|
435 | // JS multiply "overflows" differently from C/C++, so care is needed here. |
---|
436 | function bnpInvDigit() { |
---|
437 | if(this.t < 1) return 0; |
---|
438 | var x = this[0]; |
---|
439 | if((x&1) == 0) return 0; |
---|
440 | var y = x&3; // y == 1/x mod 2^2 |
---|
441 | y = (y*(2-(x&0xf)*y))&0xf; // y == 1/x mod 2^4 |
---|
442 | y = (y*(2-(x&0xff)*y))&0xff; // y == 1/x mod 2^8 |
---|
443 | y = (y*(2-(((x&0xffff)*y)&0xffff)))&0xffff; // y == 1/x mod 2^16 |
---|
444 | // last step - calculate inverse mod DV directly; |
---|
445 | // assumes 16 < DB <= 32 and assumes ability to handle 48-bit ints |
---|
446 | y = (y*(2-x*y%this._DV))%this._DV; // y == 1/x mod 2^dbits |
---|
447 | // we really want the negative inverse, and -DV < y < DV |
---|
448 | return (y>0)?this._DV-y:-y; |
---|
449 | } |
---|
450 | |
---|
451 | // Montgomery reduction |
---|
452 | function Montgomery(m) { |
---|
453 | this.m = m; |
---|
454 | this.mp = m._invDigit(); |
---|
455 | this.mpl = this.mp&0x7fff; |
---|
456 | this.mph = this.mp>>15; |
---|
457 | this.um = (1<<(m._DB-15))-1; |
---|
458 | this.mt2 = 2*m.t; |
---|
459 | } |
---|
460 | |
---|
461 | // xR mod m |
---|
462 | function montConvert(x) { |
---|
463 | var r = nbi(); |
---|
464 | x.abs()._dlShiftTo(this.m.t,r); |
---|
465 | r._divRemTo(this.m,null,r); |
---|
466 | if(x.s < 0 && r.compareTo(BigInteger.ZERO) > 0) this.m._subTo(r,r); |
---|
467 | return r; |
---|
468 | } |
---|
469 | |
---|
470 | // x/R mod m |
---|
471 | function montRevert(x) { |
---|
472 | var r = nbi(); |
---|
473 | x._copyTo(r); |
---|
474 | this.reduce(r); |
---|
475 | return r; |
---|
476 | } |
---|
477 | |
---|
478 | // x = x/R mod m (HAC 14.32) |
---|
479 | function montReduce(x) { |
---|
480 | while(x.t <= this.mt2) // pad x so am has enough room later |
---|
481 | x[x.t++] = 0; |
---|
482 | for(var i = 0; i < this.m.t; ++i) { |
---|
483 | // faster way of calculating u0 = x[i]*mp mod DV |
---|
484 | var j = x[i]&0x7fff; |
---|
485 | var u0 = (j*this.mpl+(((j*this.mph+(x[i]>>15)*this.mpl)&this.um)<<15))&x._DM; |
---|
486 | // use am to combine the multiply-shift-add into one call |
---|
487 | j = i+this.m.t; |
---|
488 | x[j] += this.m.am(0,u0,x,i,0,this.m.t); |
---|
489 | // propagate carry |
---|
490 | while(x[j] >= x._DV) { x[j] -= x._DV; x[++j]++; } |
---|
491 | } |
---|
492 | x._clamp(); |
---|
493 | x._drShiftTo(this.m.t,x); |
---|
494 | if(x.compareTo(this.m) >= 0) x._subTo(this.m,x); |
---|
495 | } |
---|
496 | |
---|
497 | // r = "x^2/R mod m"; x != r |
---|
498 | function montSqrTo(x,r) { x._squareTo(r); this.reduce(r); } |
---|
499 | |
---|
500 | // r = "xy/R mod m"; x,y != r |
---|
501 | function montMulTo(x,y,r) { x._multiplyTo(y,r); this.reduce(r); } |
---|
502 | |
---|
503 | dojo.extend(Montgomery, { |
---|
504 | convert: montConvert, |
---|
505 | revert: montRevert, |
---|
506 | reduce: montReduce, |
---|
507 | mulTo: montMulTo, |
---|
508 | sqrTo: montSqrTo |
---|
509 | }); |
---|
510 | |
---|
511 | // (protected) true iff this is even |
---|
512 | function bnpIsEven() { return ((this.t>0)?(this[0]&1):this.s) == 0; } |
---|
513 | |
---|
514 | // (protected) this^e, e < 2^32, doing sqr and mul with "r" (HAC 14.79) |
---|
515 | function bnpExp(e,z) { |
---|
516 | if(e > 0xffffffff || e < 1) return BigInteger.ONE; |
---|
517 | var r = nbi(), r2 = nbi(), g = z.convert(this), i = nbits(e)-1; |
---|
518 | g._copyTo(r); |
---|
519 | while(--i >= 0) { |
---|
520 | z.sqrTo(r,r2); |
---|
521 | if((e&(1<<i)) > 0) z.mulTo(r2,g,r); |
---|
522 | else { var t = r; r = r2; r2 = t; } |
---|
523 | } |
---|
524 | return z.revert(r); |
---|
525 | } |
---|
526 | |
---|
527 | // (public) this^e % m, 0 <= e < 2^32 |
---|
528 | function bnModPowInt(e,m) { |
---|
529 | var z; |
---|
530 | if(e < 256 || m._isEven()) z = new Classic(m); else z = new Montgomery(m); |
---|
531 | return this._exp(e,z); |
---|
532 | } |
---|
533 | |
---|
534 | dojo.extend(BigInteger, { |
---|
535 | // protected, not part of the official API |
---|
536 | _DB: dbits, |
---|
537 | _DM: (1 << dbits) - 1, |
---|
538 | _DV: 1 << dbits, |
---|
539 | |
---|
540 | _FV: Math.pow(2, BI_FP), |
---|
541 | _F1: BI_FP - dbits, |
---|
542 | _F2: 2 * dbits-BI_FP, |
---|
543 | |
---|
544 | // protected |
---|
545 | _copyTo: bnpCopyTo, |
---|
546 | _fromInt: bnpFromInt, |
---|
547 | _fromString: bnpFromString, |
---|
548 | _clamp: bnpClamp, |
---|
549 | _dlShiftTo: bnpDLShiftTo, |
---|
550 | _drShiftTo: bnpDRShiftTo, |
---|
551 | _lShiftTo: bnpLShiftTo, |
---|
552 | _rShiftTo: bnpRShiftTo, |
---|
553 | _subTo: bnpSubTo, |
---|
554 | _multiplyTo: bnpMultiplyTo, |
---|
555 | _squareTo: bnpSquareTo, |
---|
556 | _divRemTo: bnpDivRemTo, |
---|
557 | _invDigit: bnpInvDigit, |
---|
558 | _isEven: bnpIsEven, |
---|
559 | _exp: bnpExp, |
---|
560 | |
---|
561 | // public |
---|
562 | toString: bnToString, |
---|
563 | negate: bnNegate, |
---|
564 | abs: bnAbs, |
---|
565 | compareTo: bnCompareTo, |
---|
566 | bitLength: bnBitLength, |
---|
567 | mod: bnMod, |
---|
568 | modPowInt: bnModPowInt |
---|
569 | }); |
---|
570 | |
---|
571 | dojo._mixin(BigInteger, { |
---|
572 | // "constants" |
---|
573 | ZERO: nbv(0), |
---|
574 | ONE: nbv(1), |
---|
575 | |
---|
576 | // internal functions |
---|
577 | _nbi: nbi, |
---|
578 | _nbv: nbv, |
---|
579 | _nbits: nbits, |
---|
580 | |
---|
581 | // internal classes |
---|
582 | _Montgomery: Montgomery |
---|
583 | }); |
---|
584 | |
---|
585 | // export to DojoX |
---|
586 | dojox.math.BigInteger = BigInteger; |
---|
587 | |
---|
588 | return dojox.math.BigInteger; |
---|
589 | }); |
---|