1 | // AMD-ID "dojox/math/stats" |
---|
2 | define(["dojo", "../main"], function(dojo, dojox) { |
---|
3 | |
---|
4 | dojo.getObject("math.stats", true, dojox); |
---|
5 | |
---|
6 | var st = dojox.math.stats; |
---|
7 | dojo.mixin(st, { |
---|
8 | sd: function(/* Number[] */a){ |
---|
9 | // summary: |
---|
10 | // Returns the standard deviation of the passed arguments. |
---|
11 | return Math.sqrt(st.variance(a)); // Number |
---|
12 | }, |
---|
13 | |
---|
14 | variance: function(/* Number[] */a){ |
---|
15 | // summary: |
---|
16 | // Find the variance in the passed array of numbers. |
---|
17 | var mean=0, squares=0; |
---|
18 | dojo.forEach(a, function(item){ |
---|
19 | mean+=item; |
---|
20 | squares+=Math.pow(item,2); |
---|
21 | }); |
---|
22 | return (squares/a.length)-Math.pow(mean/a.length, 2); // Number |
---|
23 | }, |
---|
24 | |
---|
25 | bestFit: function(/* Object[] || Number[] */a, /* String? */xProp, /* String? */yProp){ |
---|
26 | // summary: |
---|
27 | // Calculate the slope and intercept in a linear fashion. An array |
---|
28 | // of objects is expected; optionally you can pass in the property |
---|
29 | // names for "x" and "y", else x/y is used as the default. If you |
---|
30 | // pass an array of numbers, it will be mapped to a set of {x,y} objects |
---|
31 | // where x = the array index. |
---|
32 | xProp = xProp || "x", yProp = yProp || "y"; |
---|
33 | if(a[0] !== undefined && typeof(a[0]) == "number"){ |
---|
34 | // this is an array of numbers, so use the index as x. |
---|
35 | a = dojo.map(a, function(item, idx){ |
---|
36 | return { x: idx, y: item }; |
---|
37 | }); |
---|
38 | } |
---|
39 | |
---|
40 | var sx = 0, sy = 0, sxx = 0, syy = 0, sxy = 0, stt = 0, sts = 0, n = a.length, t; |
---|
41 | for(var i=0; i<n; i++){ |
---|
42 | sx += a[i][xProp]; |
---|
43 | sy += a[i][yProp]; |
---|
44 | sxx += Math.pow(a[i][xProp], 2); |
---|
45 | syy += Math.pow(a[i][yProp], 2); |
---|
46 | sxy += a[i][xProp] * a[i][yProp]; |
---|
47 | } |
---|
48 | |
---|
49 | // we use the following because it's more efficient and accurate for determining the slope. |
---|
50 | for(i=0; i<n; i++){ |
---|
51 | t = a[i][xProp] - sx/n; |
---|
52 | stt += t*t; |
---|
53 | sts += t*a[i][yProp]; |
---|
54 | } |
---|
55 | var slope = sts/(stt||1); // prevent divide by zero. |
---|
56 | |
---|
57 | // get Pearson's R |
---|
58 | var d = Math.sqrt((sxx - Math.pow(sx,2)/n) * (syy - Math.pow(sy,2)/n)); |
---|
59 | if(d === 0){ |
---|
60 | throw new Error("dojox.math.stats.bestFit: the denominator for Pearson's R is 0."); |
---|
61 | } |
---|
62 | |
---|
63 | var r = (sxy-(sx*sy/n)) / d; |
---|
64 | var r2 = Math.pow(r, 2); |
---|
65 | if(slope < 0){ |
---|
66 | r = -r; |
---|
67 | } |
---|
68 | |
---|
69 | // to use: y = slope*x + intercept; |
---|
70 | return { // Object |
---|
71 | slope: slope, |
---|
72 | intercept: (sy - sx*slope)/(n||1), |
---|
73 | r: r, |
---|
74 | r2: r2 |
---|
75 | }; |
---|
76 | }, |
---|
77 | |
---|
78 | forecast: function(/* Object[] || Number[] */a, /* Number */x, /* String? */xProp, /* String? */yProp){ |
---|
79 | // summary: |
---|
80 | // Using the bestFit algorithm above, find y for the given x. |
---|
81 | var fit = st.bestFit(a, xProp, yProp); |
---|
82 | return (fit.slope * x) + fit.intercept; // Number |
---|
83 | }, |
---|
84 | |
---|
85 | mean: function(/* Number[] */a){ |
---|
86 | // summary: |
---|
87 | // Returns the mean value in the passed array. |
---|
88 | var t=0; |
---|
89 | dojo.forEach(a, function(v){ |
---|
90 | t += v; |
---|
91 | }); |
---|
92 | return t / Math.max(a.length, 1); // Number |
---|
93 | }, |
---|
94 | |
---|
95 | min: function(/* Number[] */a){ |
---|
96 | // summary: |
---|
97 | // Returns the min value in the passed array. |
---|
98 | return Math.min.apply(null, a); // Number |
---|
99 | }, |
---|
100 | |
---|
101 | max: function(/* Number[] */a){ |
---|
102 | // summary: |
---|
103 | // Returns the max value in the passed array. |
---|
104 | return Math.max.apply(null, a); // Number |
---|
105 | }, |
---|
106 | |
---|
107 | median: function(/* Number[] */a){ |
---|
108 | // summary: |
---|
109 | // Returns the value closest to the middle from a sorted version of the passed array. |
---|
110 | var t = a.slice(0).sort(function(a, b){ return a - b; }); |
---|
111 | return (t[Math.floor(a.length/2)] + t[Math.ceil(a.length/2)])/2; // Number |
---|
112 | }, |
---|
113 | |
---|
114 | mode: function(/* Number[] */a){ |
---|
115 | // summary: |
---|
116 | // Returns the mode from the passed array (number that appears the most often). |
---|
117 | // This is not the most efficient method, since it requires a double scan, but |
---|
118 | // is ensures accuracy. |
---|
119 | var o = {}, r = 0, m = Number.MIN_VALUE; |
---|
120 | dojo.forEach(a, function(v){ |
---|
121 | (o[v]!==undefined)?o[v]++:o[v]=1; |
---|
122 | }); |
---|
123 | |
---|
124 | // we did the lookup map because we need the number that appears the most. |
---|
125 | for(var p in o){ |
---|
126 | if(m < o[p]){ |
---|
127 | m = o[p], r = p; |
---|
128 | } |
---|
129 | } |
---|
130 | return r; // Number |
---|
131 | }, |
---|
132 | |
---|
133 | sum: function(/* Number[] */a){ |
---|
134 | // summary: |
---|
135 | // Return the sum of all the numbers in the passed array. Does |
---|
136 | // not check to make sure values within a are NaN (should simply |
---|
137 | // return NaN). |
---|
138 | var sum = 0; |
---|
139 | dojo.forEach(a, function(n){ |
---|
140 | sum += n; |
---|
141 | }); |
---|
142 | return sum; // Number |
---|
143 | }, |
---|
144 | |
---|
145 | approxLin: function(a, pos){ |
---|
146 | // summary: |
---|
147 | // Returns a linearly approximated value from an array using |
---|
148 | // a normalized float position value. |
---|
149 | // a: Number[]: |
---|
150 | // a sorted numeric array to be used for the approximation. |
---|
151 | // pos: Number: |
---|
152 | // a position number from 0 to 1. If outside of this range it |
---|
153 | // will be clamped. |
---|
154 | // returns: Number |
---|
155 | var p = pos * (a.length - 1), t = Math.ceil(p), f = t - 1; |
---|
156 | if(f < 0){ return a[0]; } |
---|
157 | if(t >= a.length){ return a[a.length - 1]; } |
---|
158 | return a[f] * (t - p) + a[t] * (p - f); // Number |
---|
159 | }, |
---|
160 | |
---|
161 | summary: function(a, alreadySorted){ |
---|
162 | // summary: |
---|
163 | // Returns a non-parametric collection of summary statistics: |
---|
164 | // the classic five-number summary extended to the Bowley's |
---|
165 | // seven-figure summary. |
---|
166 | // a: Number[]: |
---|
167 | // a numeric array to be appraised. |
---|
168 | // alreadySorted: Boolean?: |
---|
169 | // a Boolean flag to indicated that the array is already sorted. |
---|
170 | // This is an optional flag purely to improve the performance. |
---|
171 | // If skipped, the array will be assumed unsorted. |
---|
172 | // returns: Object |
---|
173 | if(!alreadySorted){ |
---|
174 | a = a.slice(0); // copy the array |
---|
175 | a.sort(function(a, b){ return a - b; }); // sort it properly |
---|
176 | } |
---|
177 | var l = st.approxLin, |
---|
178 | result = { |
---|
179 | // the five-number summary |
---|
180 | min: a[0], // minimum |
---|
181 | p25: l(a, 0.25), // lower quartile |
---|
182 | med: l(a, 0.5), // median |
---|
183 | p75: l(a, 0.75), // upper quartile |
---|
184 | max: a[a.length - 1], // maximum |
---|
185 | // extended to the Bowley's seven-figure summary |
---|
186 | p10: l(a, 0.1), // first decile |
---|
187 | p90: l(a, 0.9) // last decile |
---|
188 | }; |
---|
189 | return result; // Object |
---|
190 | } |
---|
191 | }); |
---|
192 | |
---|
193 | return dojox.math.stats; |
---|
194 | }); |
---|