[483] | 1 | define([ |
---|
| 2 | "./_base" |
---|
| 3 | ], function(gfx){ |
---|
| 4 | |
---|
| 5 | var bu = gfx.bezierutils = {}, |
---|
| 6 | error = 0.1; |
---|
| 7 | |
---|
| 8 | var tAtLength = bu.tAtLength = function(points, length){ |
---|
| 9 | // summary: |
---|
| 10 | // Returns the t corresponding to the given length for the specified bezier curve. |
---|
| 11 | // points: Number[] |
---|
| 12 | // The bezier points. Should be [p1x, p1y, c1x, c1y, c2x, c2y, p2x, p2y] for a cubic |
---|
| 13 | // bezier curve or [p1x, p1y, cx, cy, p2x, p2y] for a quadratic bezier curve. |
---|
| 14 | // length: Number |
---|
| 15 | // The length. |
---|
| 16 | var t = 0, |
---|
| 17 | quadratic = points.length == 6, |
---|
| 18 | currentLen = 0, |
---|
| 19 | splitCount = 0, |
---|
| 20 | splitFunc = quadratic ? splitQBezierAtT : splitBezierAtT; |
---|
| 21 | var _compute = function(p, error){ |
---|
| 22 | // control points polygon length |
---|
| 23 | var pLen = 0; |
---|
| 24 | for(var i = 0; i < p.length-2; i+=2) |
---|
| 25 | pLen += distance(p[i],p[i+1],p[i+2],p[i+3]); |
---|
| 26 | // chord length |
---|
| 27 | var chord = quadratic ? |
---|
| 28 | distance(points[0],points[1],points[4],points[5]) : |
---|
| 29 | distance(points[0],points[1],points[6],points[7]); |
---|
| 30 | // if needs more approx. or if currentLen is greater than the target length, |
---|
| 31 | // split the curve one more time |
---|
| 32 | if(pLen - chord > error || currentLen + pLen > length + error){ |
---|
| 33 | ++splitCount; |
---|
| 34 | var newbezier = splitFunc(p, .5); |
---|
| 35 | // check 1st subpath |
---|
| 36 | _compute(newbezier[0], error); |
---|
| 37 | // the 1st subcurve was the good one, we stop |
---|
| 38 | if(Math.abs(currentLen - length) <= error){ |
---|
| 39 | return; |
---|
| 40 | } |
---|
| 41 | // need to continue with the 2nde subcurve |
---|
| 42 | _compute(newbezier[1], error); |
---|
| 43 | return ; |
---|
| 44 | } |
---|
| 45 | currentLen += pLen; |
---|
| 46 | t += 1.0 / (1 << splitCount); |
---|
| 47 | }; |
---|
| 48 | if(length) |
---|
| 49 | _compute(points, 0.5); |
---|
| 50 | return t; |
---|
| 51 | }; |
---|
| 52 | |
---|
| 53 | var computeLength = bu.computeLength = function(/*Array*/points){ |
---|
| 54 | // summary: |
---|
| 55 | // Returns the length of the given bezier curve. |
---|
| 56 | // points: Number[] |
---|
| 57 | // The bezier points. Should be [p1x, p1y, c1x, c1y, c2x, c2y, p2x, p2y] for a cubic |
---|
| 58 | // bezier curve or [p1x, p1y, cx, cy, p2x, p2y] for a quadratic bezier curve. |
---|
| 59 | |
---|
| 60 | var quadratic = points.length == 6, pLen=0; |
---|
| 61 | // control points polygon length |
---|
| 62 | for(var i = 0; i < points.length-2; i+=2) |
---|
| 63 | pLen += distance(points[i],points[i+1],points[i+2],points[i+3]); |
---|
| 64 | // chord length |
---|
| 65 | var chord = quadratic ? |
---|
| 66 | distance(points[0],points[1],points[4],points[5]) : |
---|
| 67 | distance(points[0],points[1],points[6],points[7]); |
---|
| 68 | // split polygons until the polygon and the chord are "the same" |
---|
| 69 | if(pLen-chord>error){ |
---|
| 70 | var newBeziers = quadratic ? splitQBezierAtT(points,.5) : splitCBezierAtT(points,.5); |
---|
| 71 | var length = computeLength(newBeziers[0], quadratic); |
---|
| 72 | length += computeLength(newBeziers[1], quadratic); |
---|
| 73 | return length; |
---|
| 74 | } |
---|
| 75 | // pLen is close enough, done. |
---|
| 76 | return pLen; |
---|
| 77 | }; |
---|
| 78 | |
---|
| 79 | var distance = bu.distance = function(x1, y1, x2, y2){ |
---|
| 80 | // summary: |
---|
| 81 | // Returns the distance between the specified points. |
---|
| 82 | return Math.sqrt((x2-x1)*(x2-x1)+(y2-y1)*(y2-y1)); |
---|
| 83 | }; |
---|
| 84 | |
---|
| 85 | var splitQBezierAtT = function(points, t){ |
---|
| 86 | // summary: |
---|
| 87 | // Split a quadratic bezier curve into 2 sub-quadratic beziers at the specified t. |
---|
| 88 | |
---|
| 89 | // de Casteljau |
---|
| 90 | var r = 1-t, |
---|
| 91 | r2 = r*r, |
---|
| 92 | t2 = t*t, |
---|
| 93 | p1x = points[0], |
---|
| 94 | p1y = points[1], |
---|
| 95 | cx = points[2], |
---|
| 96 | cy = points[3], |
---|
| 97 | p2x = points[4], |
---|
| 98 | p2y = points[5], |
---|
| 99 | |
---|
| 100 | ax = r*p1x + t*cx, |
---|
| 101 | ay = r*p1y + t*cy, |
---|
| 102 | bx = r*cx + t*p2x, |
---|
| 103 | by = r*cy + t*p2y, |
---|
| 104 | px = r2*p1x + 2*r*t*cx + t2*p2x, |
---|
| 105 | py = r2*p1y + 2*r*t*cy + t2*p2y; |
---|
| 106 | |
---|
| 107 | return [ |
---|
| 108 | [ |
---|
| 109 | p1x, p1y, |
---|
| 110 | ax, ay, |
---|
| 111 | px, py |
---|
| 112 | ], |
---|
| 113 | [ |
---|
| 114 | px, py, |
---|
| 115 | bx, by, |
---|
| 116 | p2x, p2y |
---|
| 117 | ] |
---|
| 118 | ]; |
---|
| 119 | }; |
---|
| 120 | |
---|
| 121 | var splitCBezierAtT = function(points, t){ |
---|
| 122 | // summary: |
---|
| 123 | // Split a cubic bezier curve into 2 sub-cubic beziers at the specified t. |
---|
| 124 | |
---|
| 125 | // de Casteljau |
---|
| 126 | var r = 1-t, |
---|
| 127 | r2 = r*r, |
---|
| 128 | r3 = r2*r, |
---|
| 129 | t2 = t*t, |
---|
| 130 | t3 = t2*t, |
---|
| 131 | p1x = points[0], |
---|
| 132 | p1y = points[1], |
---|
| 133 | c1x = points[2], |
---|
| 134 | c1y = points[3], |
---|
| 135 | c2x = points[4], |
---|
| 136 | c2y = points[5], |
---|
| 137 | p2x = points[6], |
---|
| 138 | p2y = points[7], |
---|
| 139 | |
---|
| 140 | ax = r*p1x + t*c1x, |
---|
| 141 | ay = r*p1y + t*c1y, |
---|
| 142 | cx = r*c2x + t*p2x, |
---|
| 143 | cy = r*c2y + t*p2y, |
---|
| 144 | mx = r2*p1x + 2*r*t*c1x + t2*c2x, |
---|
| 145 | my = r2*p1y + 2*r*t*c1y + t2*c2y, |
---|
| 146 | nx = r2*c1x + 2*r*t*c2x + t2*p2x, |
---|
| 147 | ny = r2*c1y + 2*r*t*c2y + t2*p2y, |
---|
| 148 | px = r3*p1x + 3*r2*t*c1x + 3*r*t2*c2x+t3*p2x, |
---|
| 149 | py = r3*p1y + 3*r2*t*c1y + 3*r*t2*c2y+t3*p2y; |
---|
| 150 | |
---|
| 151 | return [ |
---|
| 152 | [ |
---|
| 153 | p1x, p1y, |
---|
| 154 | ax, ay, |
---|
| 155 | mx, my, |
---|
| 156 | px, py |
---|
| 157 | ], |
---|
| 158 | [ |
---|
| 159 | px, py, |
---|
| 160 | nx, ny, |
---|
| 161 | cx, cy, |
---|
| 162 | p2x, p2y |
---|
| 163 | ] |
---|
| 164 | ]; |
---|
| 165 | }; |
---|
| 166 | |
---|
| 167 | var splitBezierAtT = bu.splitBezierAtT = function(points, t){ |
---|
| 168 | return points.length == 6 ? splitQBezierAtT(points, t) : splitCBezierAtT(points, t); |
---|
| 169 | }; |
---|
| 170 | return bu; |
---|
| 171 | }); |
---|