1 | define([ |
---|
2 | "./_base" |
---|
3 | ], function(gfx){ |
---|
4 | |
---|
5 | var bu = gfx.bezierutils = {}, |
---|
6 | error = 0.1; |
---|
7 | |
---|
8 | var tAtLength = bu.tAtLength = function(points, length){ |
---|
9 | // summary: |
---|
10 | // Returns the t corresponding to the given length for the specified bezier curve. |
---|
11 | // points: Number[] |
---|
12 | // The bezier points. Should be [p1x, p1y, c1x, c1y, c2x, c2y, p2x, p2y] for a cubic |
---|
13 | // bezier curve or [p1x, p1y, cx, cy, p2x, p2y] for a quadratic bezier curve. |
---|
14 | // length: Number |
---|
15 | // The length. |
---|
16 | var t = 0, |
---|
17 | quadratic = points.length == 6, |
---|
18 | currentLen = 0, |
---|
19 | splitCount = 0, |
---|
20 | splitFunc = quadratic ? splitQBezierAtT : splitBezierAtT; |
---|
21 | var _compute = function(p, error){ |
---|
22 | // control points polygon length |
---|
23 | var pLen = 0; |
---|
24 | for(var i = 0; i < p.length-2; i+=2) |
---|
25 | pLen += distance(p[i],p[i+1],p[i+2],p[i+3]); |
---|
26 | // chord length |
---|
27 | var chord = quadratic ? |
---|
28 | distance(points[0],points[1],points[4],points[5]) : |
---|
29 | distance(points[0],points[1],points[6],points[7]); |
---|
30 | // if needs more approx. or if currentLen is greater than the target length, |
---|
31 | // split the curve one more time |
---|
32 | if(pLen - chord > error || currentLen + pLen > length + error){ |
---|
33 | ++splitCount; |
---|
34 | var newbezier = splitFunc(p, .5); |
---|
35 | // check 1st subpath |
---|
36 | _compute(newbezier[0], error); |
---|
37 | // the 1st subcurve was the good one, we stop |
---|
38 | if(Math.abs(currentLen - length) <= error){ |
---|
39 | return; |
---|
40 | } |
---|
41 | // need to continue with the 2nde subcurve |
---|
42 | _compute(newbezier[1], error); |
---|
43 | return ; |
---|
44 | } |
---|
45 | currentLen += pLen; |
---|
46 | t += 1.0 / (1 << splitCount); |
---|
47 | }; |
---|
48 | if(length) |
---|
49 | _compute(points, 0.5); |
---|
50 | return t; |
---|
51 | }; |
---|
52 | |
---|
53 | var computeLength = bu.computeLength = function(/*Array*/points){ |
---|
54 | // summary: |
---|
55 | // Returns the length of the given bezier curve. |
---|
56 | // points: Number[] |
---|
57 | // The bezier points. Should be [p1x, p1y, c1x, c1y, c2x, c2y, p2x, p2y] for a cubic |
---|
58 | // bezier curve or [p1x, p1y, cx, cy, p2x, p2y] for a quadratic bezier curve. |
---|
59 | |
---|
60 | var quadratic = points.length == 6, pLen=0; |
---|
61 | // control points polygon length |
---|
62 | for(var i = 0; i < points.length-2; i+=2) |
---|
63 | pLen += distance(points[i],points[i+1],points[i+2],points[i+3]); |
---|
64 | // chord length |
---|
65 | var chord = quadratic ? |
---|
66 | distance(points[0],points[1],points[4],points[5]) : |
---|
67 | distance(points[0],points[1],points[6],points[7]); |
---|
68 | // split polygons until the polygon and the chord are "the same" |
---|
69 | if(pLen-chord>error){ |
---|
70 | var newBeziers = quadratic ? splitQBezierAtT(points,.5) : splitCBezierAtT(points,.5); |
---|
71 | var length = computeLength(newBeziers[0], quadratic); |
---|
72 | length += computeLength(newBeziers[1], quadratic); |
---|
73 | return length; |
---|
74 | } |
---|
75 | // pLen is close enough, done. |
---|
76 | return pLen; |
---|
77 | }; |
---|
78 | |
---|
79 | var distance = bu.distance = function(x1, y1, x2, y2){ |
---|
80 | // summary: |
---|
81 | // Returns the distance between the specified points. |
---|
82 | return Math.sqrt((x2-x1)*(x2-x1)+(y2-y1)*(y2-y1)); |
---|
83 | }; |
---|
84 | |
---|
85 | var splitQBezierAtT = function(points, t){ |
---|
86 | // summary: |
---|
87 | // Split a quadratic bezier curve into 2 sub-quadratic beziers at the specified t. |
---|
88 | |
---|
89 | // de Casteljau |
---|
90 | var r = 1-t, |
---|
91 | r2 = r*r, |
---|
92 | t2 = t*t, |
---|
93 | p1x = points[0], |
---|
94 | p1y = points[1], |
---|
95 | cx = points[2], |
---|
96 | cy = points[3], |
---|
97 | p2x = points[4], |
---|
98 | p2y = points[5], |
---|
99 | |
---|
100 | ax = r*p1x + t*cx, |
---|
101 | ay = r*p1y + t*cy, |
---|
102 | bx = r*cx + t*p2x, |
---|
103 | by = r*cy + t*p2y, |
---|
104 | px = r2*p1x + 2*r*t*cx + t2*p2x, |
---|
105 | py = r2*p1y + 2*r*t*cy + t2*p2y; |
---|
106 | |
---|
107 | return [ |
---|
108 | [ |
---|
109 | p1x, p1y, |
---|
110 | ax, ay, |
---|
111 | px, py |
---|
112 | ], |
---|
113 | [ |
---|
114 | px, py, |
---|
115 | bx, by, |
---|
116 | p2x, p2y |
---|
117 | ] |
---|
118 | ]; |
---|
119 | }; |
---|
120 | |
---|
121 | var splitCBezierAtT = function(points, t){ |
---|
122 | // summary: |
---|
123 | // Split a cubic bezier curve into 2 sub-cubic beziers at the specified t. |
---|
124 | |
---|
125 | // de Casteljau |
---|
126 | var r = 1-t, |
---|
127 | r2 = r*r, |
---|
128 | r3 = r2*r, |
---|
129 | t2 = t*t, |
---|
130 | t3 = t2*t, |
---|
131 | p1x = points[0], |
---|
132 | p1y = points[1], |
---|
133 | c1x = points[2], |
---|
134 | c1y = points[3], |
---|
135 | c2x = points[4], |
---|
136 | c2y = points[5], |
---|
137 | p2x = points[6], |
---|
138 | p2y = points[7], |
---|
139 | |
---|
140 | ax = r*p1x + t*c1x, |
---|
141 | ay = r*p1y + t*c1y, |
---|
142 | cx = r*c2x + t*p2x, |
---|
143 | cy = r*c2y + t*p2y, |
---|
144 | mx = r2*p1x + 2*r*t*c1x + t2*c2x, |
---|
145 | my = r2*p1y + 2*r*t*c1y + t2*c2y, |
---|
146 | nx = r2*c1x + 2*r*t*c2x + t2*p2x, |
---|
147 | ny = r2*c1y + 2*r*t*c2y + t2*p2y, |
---|
148 | px = r3*p1x + 3*r2*t*c1x + 3*r*t2*c2x+t3*p2x, |
---|
149 | py = r3*p1y + 3*r2*t*c1y + 3*r*t2*c2y+t3*p2y; |
---|
150 | |
---|
151 | return [ |
---|
152 | [ |
---|
153 | p1x, p1y, |
---|
154 | ax, ay, |
---|
155 | mx, my, |
---|
156 | px, py |
---|
157 | ], |
---|
158 | [ |
---|
159 | px, py, |
---|
160 | nx, ny, |
---|
161 | cx, cy, |
---|
162 | p2x, p2y |
---|
163 | ] |
---|
164 | ]; |
---|
165 | }; |
---|
166 | |
---|
167 | var splitBezierAtT = bu.splitBezierAtT = function(points, t){ |
---|
168 | return points.length == 6 ? splitQBezierAtT(points, t) : splitCBezierAtT(points, t); |
---|
169 | }; |
---|
170 | return bu; |
---|
171 | }); |
---|