[483] | 1 | // AMD-ID "dojox/math/BigInteger" |
---|
| 2 | define(["dojo", "dojox"], function(dojo, dojox) { |
---|
| 3 | |
---|
| 4 | dojo.getObject("math.BigInteger", true, dojox); |
---|
| 5 | dojo.experimental("dojox.math.BigInteger"); |
---|
| 6 | |
---|
| 7 | // Contributed under CLA by Tom Wu <tjw@cs.Stanford.EDU> |
---|
| 8 | // See http://www-cs-students.stanford.edu/~tjw/jsbn/ for details. |
---|
| 9 | |
---|
| 10 | // Basic JavaScript BN library - subset useful for RSA encryption. |
---|
| 11 | // The API for dojox.math.BigInteger closely resembles that of the java.math.BigInteger class in Java. |
---|
| 12 | |
---|
| 13 | // Bits per digit |
---|
| 14 | var dbits; |
---|
| 15 | |
---|
| 16 | // JavaScript engine analysis |
---|
| 17 | var canary = 0xdeadbeefcafe; |
---|
| 18 | var j_lm = ((canary&0xffffff)==0xefcafe); |
---|
| 19 | |
---|
| 20 | // (public) Constructor |
---|
| 21 | function BigInteger(a,b,c) { |
---|
| 22 | if(a != null) |
---|
| 23 | if("number" == typeof a) this._fromNumber(a,b,c); |
---|
| 24 | else if(!b && "string" != typeof a) this._fromString(a,256); |
---|
| 25 | else this._fromString(a,b); |
---|
| 26 | } |
---|
| 27 | |
---|
| 28 | // return new, unset BigInteger |
---|
| 29 | function nbi() { return new BigInteger(null); } |
---|
| 30 | |
---|
| 31 | // am: Compute w_j += (x*this_i), propagate carries, |
---|
| 32 | // c is initial carry, returns final carry. |
---|
| 33 | // c < 3*dvalue, x < 2*dvalue, this_i < dvalue |
---|
| 34 | // We need to select the fastest one that works in this environment. |
---|
| 35 | |
---|
| 36 | // am1: use a single mult and divide to get the high bits, |
---|
| 37 | // max digit bits should be 26 because |
---|
| 38 | // max internal value = 2*dvalue^2-2*dvalue (< 2^53) |
---|
| 39 | function am1(i,x,w,j,c,n) { |
---|
| 40 | while(--n >= 0) { |
---|
| 41 | var v = x*this[i++]+w[j]+c; |
---|
| 42 | c = Math.floor(v/0x4000000); |
---|
| 43 | w[j++] = v&0x3ffffff; |
---|
| 44 | } |
---|
| 45 | return c; |
---|
| 46 | } |
---|
| 47 | // am2 avoids a big mult-and-extract completely. |
---|
| 48 | // Max digit bits should be <= 30 because we do bitwise ops |
---|
| 49 | // on values up to 2*hdvalue^2-hdvalue-1 (< 2^31) |
---|
| 50 | function am2(i,x,w,j,c,n) { |
---|
| 51 | var xl = x&0x7fff, xh = x>>15; |
---|
| 52 | while(--n >= 0) { |
---|
| 53 | var l = this[i]&0x7fff; |
---|
| 54 | var h = this[i++]>>15; |
---|
| 55 | var m = xh*l+h*xl; |
---|
| 56 | l = xl*l+((m&0x7fff)<<15)+w[j]+(c&0x3fffffff); |
---|
| 57 | c = (l>>>30)+(m>>>15)+xh*h+(c>>>30); |
---|
| 58 | w[j++] = l&0x3fffffff; |
---|
| 59 | } |
---|
| 60 | return c; |
---|
| 61 | } |
---|
| 62 | // Alternately, set max digit bits to 28 since some |
---|
| 63 | // browsers slow down when dealing with 32-bit numbers. |
---|
| 64 | function am3(i,x,w,j,c,n) { |
---|
| 65 | var xl = x&0x3fff, xh = x>>14; |
---|
| 66 | while(--n >= 0) { |
---|
| 67 | var l = this[i]&0x3fff; |
---|
| 68 | var h = this[i++]>>14; |
---|
| 69 | var m = xh*l+h*xl; |
---|
| 70 | l = xl*l+((m&0x3fff)<<14)+w[j]+c; |
---|
| 71 | c = (l>>28)+(m>>14)+xh*h; |
---|
| 72 | w[j++] = l&0xfffffff; |
---|
| 73 | } |
---|
| 74 | return c; |
---|
| 75 | } |
---|
| 76 | if(j_lm && (navigator.appName == "Microsoft Internet Explorer")) { |
---|
| 77 | BigInteger.prototype.am = am2; |
---|
| 78 | dbits = 30; |
---|
| 79 | } |
---|
| 80 | else if(j_lm && (navigator.appName != "Netscape")) { |
---|
| 81 | BigInteger.prototype.am = am1; |
---|
| 82 | dbits = 26; |
---|
| 83 | } |
---|
| 84 | else { // Mozilla/Netscape seems to prefer am3 |
---|
| 85 | BigInteger.prototype.am = am3; |
---|
| 86 | dbits = 28; |
---|
| 87 | } |
---|
| 88 | |
---|
| 89 | var BI_FP = 52; |
---|
| 90 | |
---|
| 91 | // Digit conversions |
---|
| 92 | var BI_RM = "0123456789abcdefghijklmnopqrstuvwxyz"; |
---|
| 93 | var BI_RC = []; |
---|
| 94 | var rr,vv; |
---|
| 95 | rr = "0".charCodeAt(0); |
---|
| 96 | for(vv = 0; vv <= 9; ++vv) BI_RC[rr++] = vv; |
---|
| 97 | rr = "a".charCodeAt(0); |
---|
| 98 | for(vv = 10; vv < 36; ++vv) BI_RC[rr++] = vv; |
---|
| 99 | rr = "A".charCodeAt(0); |
---|
| 100 | for(vv = 10; vv < 36; ++vv) BI_RC[rr++] = vv; |
---|
| 101 | |
---|
| 102 | function int2char(n) { return BI_RM.charAt(n); } |
---|
| 103 | function intAt(s,i) { |
---|
| 104 | var c = BI_RC[s.charCodeAt(i)]; |
---|
| 105 | return (c==null)?-1:c; |
---|
| 106 | } |
---|
| 107 | |
---|
| 108 | // (protected) copy this to r |
---|
| 109 | function bnpCopyTo(r) { |
---|
| 110 | for(var i = this.t-1; i >= 0; --i) r[i] = this[i]; |
---|
| 111 | r.t = this.t; |
---|
| 112 | r.s = this.s; |
---|
| 113 | } |
---|
| 114 | |
---|
| 115 | // (protected) set from integer value x, -DV <= x < DV |
---|
| 116 | function bnpFromInt(x) { |
---|
| 117 | this.t = 1; |
---|
| 118 | this.s = (x<0)?-1:0; |
---|
| 119 | if(x > 0) this[0] = x; |
---|
| 120 | else if(x < -1) this[0] = x+_DV; |
---|
| 121 | else this.t = 0; |
---|
| 122 | } |
---|
| 123 | |
---|
| 124 | // return bigint initialized to value |
---|
| 125 | function nbv(i) { var r = nbi(); r._fromInt(i); return r; } |
---|
| 126 | |
---|
| 127 | // (protected) set from string and radix |
---|
| 128 | function bnpFromString(s,b) { |
---|
| 129 | var k; |
---|
| 130 | if(b == 16) k = 4; |
---|
| 131 | else if(b == 8) k = 3; |
---|
| 132 | else if(b == 256) k = 8; // byte array |
---|
| 133 | else if(b == 2) k = 1; |
---|
| 134 | else if(b == 32) k = 5; |
---|
| 135 | else if(b == 4) k = 2; |
---|
| 136 | else { this._fromRadix(s,b); return; } |
---|
| 137 | this.t = 0; |
---|
| 138 | this.s = 0; |
---|
| 139 | var i = s.length, mi = false, sh = 0; |
---|
| 140 | while(--i >= 0) { |
---|
| 141 | var x = (k==8)?s[i]&0xff:intAt(s,i); |
---|
| 142 | if(x < 0) { |
---|
| 143 | if(s.charAt(i) == "-") mi = true; |
---|
| 144 | continue; |
---|
| 145 | } |
---|
| 146 | mi = false; |
---|
| 147 | if(sh == 0) |
---|
| 148 | this[this.t++] = x; |
---|
| 149 | else if(sh+k > this._DB) { |
---|
| 150 | this[this.t-1] |= (x&((1<<(this._DB-sh))-1))<<sh; |
---|
| 151 | this[this.t++] = (x>>(this._DB-sh)); |
---|
| 152 | } |
---|
| 153 | else |
---|
| 154 | this[this.t-1] |= x<<sh; |
---|
| 155 | sh += k; |
---|
| 156 | if(sh >= this._DB) sh -= this._DB; |
---|
| 157 | } |
---|
| 158 | if(k == 8 && (s[0]&0x80) != 0) { |
---|
| 159 | this.s = -1; |
---|
| 160 | if(sh > 0) this[this.t-1] |= ((1<<(this._DB-sh))-1)<<sh; |
---|
| 161 | } |
---|
| 162 | this._clamp(); |
---|
| 163 | if(mi) BigInteger.ZERO._subTo(this,this); |
---|
| 164 | } |
---|
| 165 | |
---|
| 166 | // (protected) clamp off excess high words |
---|
| 167 | function bnpClamp() { |
---|
| 168 | var c = this.s&this._DM; |
---|
| 169 | while(this.t > 0 && this[this.t-1] == c) --this.t; |
---|
| 170 | } |
---|
| 171 | |
---|
| 172 | // (public) return string representation in given radix |
---|
| 173 | function bnToString(b) { |
---|
| 174 | if(this.s < 0) return "-"+this.negate().toString(b); |
---|
| 175 | var k; |
---|
| 176 | if(b == 16) k = 4; |
---|
| 177 | else if(b == 8) k = 3; |
---|
| 178 | else if(b == 2) k = 1; |
---|
| 179 | else if(b == 32) k = 5; |
---|
| 180 | else if(b == 4) k = 2; |
---|
| 181 | else return this._toRadix(b); |
---|
| 182 | var km = (1<<k)-1, d, m = false, r = "", i = this.t; |
---|
| 183 | var p = this._DB-(i*this._DB)%k; |
---|
| 184 | if(i-- > 0) { |
---|
| 185 | if(p < this._DB && (d = this[i]>>p) > 0) { m = true; r = int2char(d); } |
---|
| 186 | while(i >= 0) { |
---|
| 187 | if(p < k) { |
---|
| 188 | d = (this[i]&((1<<p)-1))<<(k-p); |
---|
| 189 | d |= this[--i]>>(p+=this._DB-k); |
---|
| 190 | } |
---|
| 191 | else { |
---|
| 192 | d = (this[i]>>(p-=k))&km; |
---|
| 193 | if(p <= 0) { p += this._DB; --i; } |
---|
| 194 | } |
---|
| 195 | if(d > 0) m = true; |
---|
| 196 | if(m) r += int2char(d); |
---|
| 197 | } |
---|
| 198 | } |
---|
| 199 | return m?r:"0"; |
---|
| 200 | } |
---|
| 201 | |
---|
| 202 | // (public) -this |
---|
| 203 | function bnNegate() { var r = nbi(); BigInteger.ZERO._subTo(this,r); return r; } |
---|
| 204 | |
---|
| 205 | // (public) |this| |
---|
| 206 | function bnAbs() { return (this.s<0)?this.negate():this; } |
---|
| 207 | |
---|
| 208 | // (public) return + if this > a, - if this < a, 0 if equal |
---|
| 209 | function bnCompareTo(a) { |
---|
| 210 | var r = this.s-a.s; |
---|
| 211 | if(r) return r; |
---|
| 212 | var i = this.t; |
---|
| 213 | r = i-a.t; |
---|
| 214 | if(r) return r; |
---|
| 215 | while(--i >= 0) if((r = this[i] - a[i])) return r; |
---|
| 216 | return 0; |
---|
| 217 | } |
---|
| 218 | |
---|
| 219 | // returns bit length of the integer x |
---|
| 220 | function nbits(x) { |
---|
| 221 | var r = 1, t; |
---|
| 222 | if((t=x>>>16)) { x = t; r += 16; } |
---|
| 223 | if((t=x>>8)) { x = t; r += 8; } |
---|
| 224 | if((t=x>>4)) { x = t; r += 4; } |
---|
| 225 | if((t=x>>2)) { x = t; r += 2; } |
---|
| 226 | if((t=x>>1)) { x = t; r += 1; } |
---|
| 227 | return r; |
---|
| 228 | } |
---|
| 229 | |
---|
| 230 | // (public) return the number of bits in "this" |
---|
| 231 | function bnBitLength() { |
---|
| 232 | if(this.t <= 0) return 0; |
---|
| 233 | return this._DB*(this.t-1)+nbits(this[this.t-1]^(this.s&this._DM)); |
---|
| 234 | } |
---|
| 235 | |
---|
| 236 | // (protected) r = this << n*DB |
---|
| 237 | function bnpDLShiftTo(n,r) { |
---|
| 238 | var i; |
---|
| 239 | for(i = this.t-1; i >= 0; --i) r[i+n] = this[i]; |
---|
| 240 | for(i = n-1; i >= 0; --i) r[i] = 0; |
---|
| 241 | r.t = this.t+n; |
---|
| 242 | r.s = this.s; |
---|
| 243 | } |
---|
| 244 | |
---|
| 245 | // (protected) r = this >> n*DB |
---|
| 246 | function bnpDRShiftTo(n,r) { |
---|
| 247 | for(var i = n; i < this.t; ++i) r[i-n] = this[i]; |
---|
| 248 | r.t = Math.max(this.t-n,0); |
---|
| 249 | r.s = this.s; |
---|
| 250 | } |
---|
| 251 | |
---|
| 252 | // (protected) r = this << n |
---|
| 253 | function bnpLShiftTo(n,r) { |
---|
| 254 | var bs = n%this._DB; |
---|
| 255 | var cbs = this._DB-bs; |
---|
| 256 | var bm = (1<<cbs)-1; |
---|
| 257 | var ds = Math.floor(n/this._DB), c = (this.s<<bs)&this._DM, i; |
---|
| 258 | for(i = this.t-1; i >= 0; --i) { |
---|
| 259 | r[i+ds+1] = (this[i]>>cbs)|c; |
---|
| 260 | c = (this[i]&bm)<<bs; |
---|
| 261 | } |
---|
| 262 | for(i = ds-1; i >= 0; --i) r[i] = 0; |
---|
| 263 | r[ds] = c; |
---|
| 264 | r.t = this.t+ds+1; |
---|
| 265 | r.s = this.s; |
---|
| 266 | r._clamp(); |
---|
| 267 | } |
---|
| 268 | |
---|
| 269 | // (protected) r = this >> n |
---|
| 270 | function bnpRShiftTo(n,r) { |
---|
| 271 | r.s = this.s; |
---|
| 272 | var ds = Math.floor(n/this._DB); |
---|
| 273 | if(ds >= this.t) { r.t = 0; return; } |
---|
| 274 | var bs = n%this._DB; |
---|
| 275 | var cbs = this._DB-bs; |
---|
| 276 | var bm = (1<<bs)-1; |
---|
| 277 | r[0] = this[ds]>>bs; |
---|
| 278 | for(var i = ds+1; i < this.t; ++i) { |
---|
| 279 | r[i-ds-1] |= (this[i]&bm)<<cbs; |
---|
| 280 | r[i-ds] = this[i]>>bs; |
---|
| 281 | } |
---|
| 282 | if(bs > 0) r[this.t-ds-1] |= (this.s&bm)<<cbs; |
---|
| 283 | r.t = this.t-ds; |
---|
| 284 | r._clamp(); |
---|
| 285 | } |
---|
| 286 | |
---|
| 287 | // (protected) r = this - a |
---|
| 288 | function bnpSubTo(a,r) { |
---|
| 289 | var i = 0, c = 0, m = Math.min(a.t,this.t); |
---|
| 290 | while(i < m) { |
---|
| 291 | c += this[i]-a[i]; |
---|
| 292 | r[i++] = c&this._DM; |
---|
| 293 | c >>= this._DB; |
---|
| 294 | } |
---|
| 295 | if(a.t < this.t) { |
---|
| 296 | c -= a.s; |
---|
| 297 | while(i < this.t) { |
---|
| 298 | c += this[i]; |
---|
| 299 | r[i++] = c&this._DM; |
---|
| 300 | c >>= this._DB; |
---|
| 301 | } |
---|
| 302 | c += this.s; |
---|
| 303 | } |
---|
| 304 | else { |
---|
| 305 | c += this.s; |
---|
| 306 | while(i < a.t) { |
---|
| 307 | c -= a[i]; |
---|
| 308 | r[i++] = c&this._DM; |
---|
| 309 | c >>= this._DB; |
---|
| 310 | } |
---|
| 311 | c -= a.s; |
---|
| 312 | } |
---|
| 313 | r.s = (c<0)?-1:0; |
---|
| 314 | if(c < -1) r[i++] = this._DV+c; |
---|
| 315 | else if(c > 0) r[i++] = c; |
---|
| 316 | r.t = i; |
---|
| 317 | r._clamp(); |
---|
| 318 | } |
---|
| 319 | |
---|
| 320 | // (protected) r = this * a, r != this,a (HAC 14.12) |
---|
| 321 | // "this" should be the larger one if appropriate. |
---|
| 322 | function bnpMultiplyTo(a,r) { |
---|
| 323 | var x = this.abs(), y = a.abs(); |
---|
| 324 | var i = x.t; |
---|
| 325 | r.t = i+y.t; |
---|
| 326 | while(--i >= 0) r[i] = 0; |
---|
| 327 | for(i = 0; i < y.t; ++i) r[i+x.t] = x.am(0,y[i],r,i,0,x.t); |
---|
| 328 | r.s = 0; |
---|
| 329 | r._clamp(); |
---|
| 330 | if(this.s != a.s) BigInteger.ZERO._subTo(r,r); |
---|
| 331 | } |
---|
| 332 | |
---|
| 333 | // (protected) r = this^2, r != this (HAC 14.16) |
---|
| 334 | function bnpSquareTo(r) { |
---|
| 335 | var x = this.abs(); |
---|
| 336 | var i = r.t = 2*x.t; |
---|
| 337 | while(--i >= 0) r[i] = 0; |
---|
| 338 | for(i = 0; i < x.t-1; ++i) { |
---|
| 339 | var c = x.am(i,x[i],r,2*i,0,1); |
---|
| 340 | if((r[i+x.t]+=x.am(i+1,2*x[i],r,2*i+1,c,x.t-i-1)) >= x._DV) { |
---|
| 341 | r[i+x.t] -= x._DV; |
---|
| 342 | r[i+x.t+1] = 1; |
---|
| 343 | } |
---|
| 344 | } |
---|
| 345 | if(r.t > 0) r[r.t-1] += x.am(i,x[i],r,2*i,0,1); |
---|
| 346 | r.s = 0; |
---|
| 347 | r._clamp(); |
---|
| 348 | } |
---|
| 349 | |
---|
| 350 | // (protected) divide this by m, quotient and remainder to q, r (HAC 14.20) |
---|
| 351 | // r != q, this != m. q or r may be null. |
---|
| 352 | function bnpDivRemTo(m,q,r) { |
---|
| 353 | var pm = m.abs(); |
---|
| 354 | if(pm.t <= 0) return; |
---|
| 355 | var pt = this.abs(); |
---|
| 356 | if(pt.t < pm.t) { |
---|
| 357 | if(q != null) q._fromInt(0); |
---|
| 358 | if(r != null) this._copyTo(r); |
---|
| 359 | return; |
---|
| 360 | } |
---|
| 361 | if(r == null) r = nbi(); |
---|
| 362 | var y = nbi(), ts = this.s, ms = m.s; |
---|
| 363 | var nsh = this._DB-nbits(pm[pm.t-1]); // normalize modulus |
---|
| 364 | if(nsh > 0) { pm._lShiftTo(nsh,y); pt._lShiftTo(nsh,r); } |
---|
| 365 | else { pm._copyTo(y); pt._copyTo(r); } |
---|
| 366 | var ys = y.t; |
---|
| 367 | var y0 = y[ys-1]; |
---|
| 368 | if(y0 == 0) return; |
---|
| 369 | var yt = y0*(1<<this._F1)+((ys>1)?y[ys-2]>>this._F2:0); |
---|
| 370 | var d1 = this._FV/yt, d2 = (1<<this._F1)/yt, e = 1<<this._F2; |
---|
| 371 | var i = r.t, j = i-ys, t = (q==null)?nbi():q; |
---|
| 372 | y._dlShiftTo(j,t); |
---|
| 373 | if(r.compareTo(t) >= 0) { |
---|
| 374 | r[r.t++] = 1; |
---|
| 375 | r._subTo(t,r); |
---|
| 376 | } |
---|
| 377 | BigInteger.ONE._dlShiftTo(ys,t); |
---|
| 378 | t._subTo(y,y); // "negative" y so we can replace sub with am later |
---|
| 379 | while(y.t < ys) y[y.t++] = 0; |
---|
| 380 | while(--j >= 0) { |
---|
| 381 | // Estimate quotient digit |
---|
| 382 | var qd = (r[--i]==y0)?this._DM:Math.floor(r[i]*d1+(r[i-1]+e)*d2); |
---|
| 383 | if((r[i]+=y.am(0,qd,r,j,0,ys)) < qd) { // Try it out |
---|
| 384 | y._dlShiftTo(j,t); |
---|
| 385 | r._subTo(t,r); |
---|
| 386 | while(r[i] < --qd) r._subTo(t,r); |
---|
| 387 | } |
---|
| 388 | } |
---|
| 389 | if(q != null) { |
---|
| 390 | r._drShiftTo(ys,q); |
---|
| 391 | if(ts != ms) BigInteger.ZERO._subTo(q,q); |
---|
| 392 | } |
---|
| 393 | r.t = ys; |
---|
| 394 | r._clamp(); |
---|
| 395 | if(nsh > 0) r._rShiftTo(nsh,r); // Denormalize remainder |
---|
| 396 | if(ts < 0) BigInteger.ZERO._subTo(r,r); |
---|
| 397 | } |
---|
| 398 | |
---|
| 399 | // (public) this mod a |
---|
| 400 | function bnMod(a) { |
---|
| 401 | var r = nbi(); |
---|
| 402 | this.abs()._divRemTo(a,null,r); |
---|
| 403 | if(this.s < 0 && r.compareTo(BigInteger.ZERO) > 0) a._subTo(r,r); |
---|
| 404 | return r; |
---|
| 405 | } |
---|
| 406 | |
---|
| 407 | // Modular reduction using "classic" algorithm |
---|
| 408 | function Classic(m) { this.m = m; } |
---|
| 409 | function cConvert(x) { |
---|
| 410 | if(x.s < 0 || x.compareTo(this.m) >= 0) return x.mod(this.m); |
---|
| 411 | else return x; |
---|
| 412 | } |
---|
| 413 | function cRevert(x) { return x; } |
---|
| 414 | function cReduce(x) { x._divRemTo(this.m,null,x); } |
---|
| 415 | function cMulTo(x,y,r) { x._multiplyTo(y,r); this.reduce(r); } |
---|
| 416 | function cSqrTo(x,r) { x._squareTo(r); this.reduce(r); } |
---|
| 417 | |
---|
| 418 | dojo.extend(Classic, { |
---|
| 419 | convert: cConvert, |
---|
| 420 | revert: cRevert, |
---|
| 421 | reduce: cReduce, |
---|
| 422 | mulTo: cMulTo, |
---|
| 423 | sqrTo: cSqrTo |
---|
| 424 | }); |
---|
| 425 | |
---|
| 426 | // (protected) return "-1/this % 2^DB"; useful for Mont. reduction |
---|
| 427 | // justification: |
---|
| 428 | // xy == 1 (mod m) |
---|
| 429 | // xy = 1+km |
---|
| 430 | // xy(2-xy) = (1+km)(1-km) |
---|
| 431 | // x[y(2-xy)] = 1-k^2m^2 |
---|
| 432 | // x[y(2-xy)] == 1 (mod m^2) |
---|
| 433 | // if y is 1/x mod m, then y(2-xy) is 1/x mod m^2 |
---|
| 434 | // should reduce x and y(2-xy) by m^2 at each step to keep size bounded. |
---|
| 435 | // JS multiply "overflows" differently from C/C++, so care is needed here. |
---|
| 436 | function bnpInvDigit() { |
---|
| 437 | if(this.t < 1) return 0; |
---|
| 438 | var x = this[0]; |
---|
| 439 | if((x&1) == 0) return 0; |
---|
| 440 | var y = x&3; // y == 1/x mod 2^2 |
---|
| 441 | y = (y*(2-(x&0xf)*y))&0xf; // y == 1/x mod 2^4 |
---|
| 442 | y = (y*(2-(x&0xff)*y))&0xff; // y == 1/x mod 2^8 |
---|
| 443 | y = (y*(2-(((x&0xffff)*y)&0xffff)))&0xffff; // y == 1/x mod 2^16 |
---|
| 444 | // last step - calculate inverse mod DV directly; |
---|
| 445 | // assumes 16 < DB <= 32 and assumes ability to handle 48-bit ints |
---|
| 446 | y = (y*(2-x*y%this._DV))%this._DV; // y == 1/x mod 2^dbits |
---|
| 447 | // we really want the negative inverse, and -DV < y < DV |
---|
| 448 | return (y>0)?this._DV-y:-y; |
---|
| 449 | } |
---|
| 450 | |
---|
| 451 | // Montgomery reduction |
---|
| 452 | function Montgomery(m) { |
---|
| 453 | this.m = m; |
---|
| 454 | this.mp = m._invDigit(); |
---|
| 455 | this.mpl = this.mp&0x7fff; |
---|
| 456 | this.mph = this.mp>>15; |
---|
| 457 | this.um = (1<<(m._DB-15))-1; |
---|
| 458 | this.mt2 = 2*m.t; |
---|
| 459 | } |
---|
| 460 | |
---|
| 461 | // xR mod m |
---|
| 462 | function montConvert(x) { |
---|
| 463 | var r = nbi(); |
---|
| 464 | x.abs()._dlShiftTo(this.m.t,r); |
---|
| 465 | r._divRemTo(this.m,null,r); |
---|
| 466 | if(x.s < 0 && r.compareTo(BigInteger.ZERO) > 0) this.m._subTo(r,r); |
---|
| 467 | return r; |
---|
| 468 | } |
---|
| 469 | |
---|
| 470 | // x/R mod m |
---|
| 471 | function montRevert(x) { |
---|
| 472 | var r = nbi(); |
---|
| 473 | x._copyTo(r); |
---|
| 474 | this.reduce(r); |
---|
| 475 | return r; |
---|
| 476 | } |
---|
| 477 | |
---|
| 478 | // x = x/R mod m (HAC 14.32) |
---|
| 479 | function montReduce(x) { |
---|
| 480 | while(x.t <= this.mt2) // pad x so am has enough room later |
---|
| 481 | x[x.t++] = 0; |
---|
| 482 | for(var i = 0; i < this.m.t; ++i) { |
---|
| 483 | // faster way of calculating u0 = x[i]*mp mod DV |
---|
| 484 | var j = x[i]&0x7fff; |
---|
| 485 | var u0 = (j*this.mpl+(((j*this.mph+(x[i]>>15)*this.mpl)&this.um)<<15))&x._DM; |
---|
| 486 | // use am to combine the multiply-shift-add into one call |
---|
| 487 | j = i+this.m.t; |
---|
| 488 | x[j] += this.m.am(0,u0,x,i,0,this.m.t); |
---|
| 489 | // propagate carry |
---|
| 490 | while(x[j] >= x._DV) { x[j] -= x._DV; x[++j]++; } |
---|
| 491 | } |
---|
| 492 | x._clamp(); |
---|
| 493 | x._drShiftTo(this.m.t,x); |
---|
| 494 | if(x.compareTo(this.m) >= 0) x._subTo(this.m,x); |
---|
| 495 | } |
---|
| 496 | |
---|
| 497 | // r = "x^2/R mod m"; x != r |
---|
| 498 | function montSqrTo(x,r) { x._squareTo(r); this.reduce(r); } |
---|
| 499 | |
---|
| 500 | // r = "xy/R mod m"; x,y != r |
---|
| 501 | function montMulTo(x,y,r) { x._multiplyTo(y,r); this.reduce(r); } |
---|
| 502 | |
---|
| 503 | dojo.extend(Montgomery, { |
---|
| 504 | convert: montConvert, |
---|
| 505 | revert: montRevert, |
---|
| 506 | reduce: montReduce, |
---|
| 507 | mulTo: montMulTo, |
---|
| 508 | sqrTo: montSqrTo |
---|
| 509 | }); |
---|
| 510 | |
---|
| 511 | // (protected) true iff this is even |
---|
| 512 | function bnpIsEven() { return ((this.t>0)?(this[0]&1):this.s) == 0; } |
---|
| 513 | |
---|
| 514 | // (protected) this^e, e < 2^32, doing sqr and mul with "r" (HAC 14.79) |
---|
| 515 | function bnpExp(e,z) { |
---|
| 516 | if(e > 0xffffffff || e < 1) return BigInteger.ONE; |
---|
| 517 | var r = nbi(), r2 = nbi(), g = z.convert(this), i = nbits(e)-1; |
---|
| 518 | g._copyTo(r); |
---|
| 519 | while(--i >= 0) { |
---|
| 520 | z.sqrTo(r,r2); |
---|
| 521 | if((e&(1<<i)) > 0) z.mulTo(r2,g,r); |
---|
| 522 | else { var t = r; r = r2; r2 = t; } |
---|
| 523 | } |
---|
| 524 | return z.revert(r); |
---|
| 525 | } |
---|
| 526 | |
---|
| 527 | // (public) this^e % m, 0 <= e < 2^32 |
---|
| 528 | function bnModPowInt(e,m) { |
---|
| 529 | var z; |
---|
| 530 | if(e < 256 || m._isEven()) z = new Classic(m); else z = new Montgomery(m); |
---|
| 531 | return this._exp(e,z); |
---|
| 532 | } |
---|
| 533 | |
---|
| 534 | dojo.extend(BigInteger, { |
---|
| 535 | // protected, not part of the official API |
---|
| 536 | _DB: dbits, |
---|
| 537 | _DM: (1 << dbits) - 1, |
---|
| 538 | _DV: 1 << dbits, |
---|
| 539 | |
---|
| 540 | _FV: Math.pow(2, BI_FP), |
---|
| 541 | _F1: BI_FP - dbits, |
---|
| 542 | _F2: 2 * dbits-BI_FP, |
---|
| 543 | |
---|
| 544 | // protected |
---|
| 545 | _copyTo: bnpCopyTo, |
---|
| 546 | _fromInt: bnpFromInt, |
---|
| 547 | _fromString: bnpFromString, |
---|
| 548 | _clamp: bnpClamp, |
---|
| 549 | _dlShiftTo: bnpDLShiftTo, |
---|
| 550 | _drShiftTo: bnpDRShiftTo, |
---|
| 551 | _lShiftTo: bnpLShiftTo, |
---|
| 552 | _rShiftTo: bnpRShiftTo, |
---|
| 553 | _subTo: bnpSubTo, |
---|
| 554 | _multiplyTo: bnpMultiplyTo, |
---|
| 555 | _squareTo: bnpSquareTo, |
---|
| 556 | _divRemTo: bnpDivRemTo, |
---|
| 557 | _invDigit: bnpInvDigit, |
---|
| 558 | _isEven: bnpIsEven, |
---|
| 559 | _exp: bnpExp, |
---|
| 560 | |
---|
| 561 | // public |
---|
| 562 | toString: bnToString, |
---|
| 563 | negate: bnNegate, |
---|
| 564 | abs: bnAbs, |
---|
| 565 | compareTo: bnCompareTo, |
---|
| 566 | bitLength: bnBitLength, |
---|
| 567 | mod: bnMod, |
---|
| 568 | modPowInt: bnModPowInt |
---|
| 569 | }); |
---|
| 570 | |
---|
| 571 | dojo._mixin(BigInteger, { |
---|
| 572 | // "constants" |
---|
| 573 | ZERO: nbv(0), |
---|
| 574 | ONE: nbv(1), |
---|
| 575 | |
---|
| 576 | // internal functions |
---|
| 577 | _nbi: nbi, |
---|
| 578 | _nbv: nbv, |
---|
| 579 | _nbits: nbits, |
---|
| 580 | |
---|
| 581 | // internal classes |
---|
| 582 | _Montgomery: Montgomery |
---|
| 583 | }); |
---|
| 584 | |
---|
| 585 | // export to DojoX |
---|
| 586 | dojox.math.BigInteger = BigInteger; |
---|
| 587 | |
---|
| 588 | return dojox.math.BigInteger; |
---|
| 589 | }); |
---|