[483] | 1 | // AMD-ID "dojox/math/_base" |
---|
| 2 | define(["dojo", "dojox"], function(dojo, dojox) { |
---|
| 3 | dojo.getObject("math", true, dojox); |
---|
| 4 | |
---|
| 5 | var m = dojox.math; |
---|
| 6 | dojo.mixin(dojox.math, { |
---|
| 7 | toRadians: function(/* Number */n){ |
---|
| 8 | // summary: |
---|
| 9 | // Convert the passed number to radians. |
---|
| 10 | return (n*Math.PI)/180; // Number |
---|
| 11 | }, |
---|
| 12 | toDegrees: function(/* Number */n){ |
---|
| 13 | // summary: |
---|
| 14 | // Convert the passed number to degrees. |
---|
| 15 | return (n*180)/Math.PI; // Number |
---|
| 16 | }, |
---|
| 17 | degreesToRadians: function(/* Number */n){ |
---|
| 18 | // summary: |
---|
| 19 | // Deprecated. Use dojox.math.toRadians. |
---|
| 20 | return m.toRadians(n); // Number |
---|
| 21 | }, |
---|
| 22 | radiansToDegrees: function(/* Number */n){ |
---|
| 23 | // summary: |
---|
| 24 | // Deprecated. Use dojox.math.toDegrees. |
---|
| 25 | return m.toDegrees(n); // Number |
---|
| 26 | }, |
---|
| 27 | |
---|
| 28 | _gamma: function(z){ |
---|
| 29 | // summary: |
---|
| 30 | // Compute the gamma function for the passed number. |
---|
| 31 | // Approximately 14 digits of precision with non-integers. |
---|
| 32 | var answer = 1; // 0! |
---|
| 33 | // gamma(n+1) = n * gamma(n) |
---|
| 34 | while (--z >= 1){ |
---|
| 35 | answer *= z; |
---|
| 36 | } |
---|
| 37 | if(z == 0){ return answer; } // normal integer quick return |
---|
| 38 | if(Math.floor(z) == z){ return NaN; } // undefined at nonpositive integers since sin() below will return 0 |
---|
| 39 | // assert: z < 1, remember this z is really z-1 |
---|
| 40 | if(z == -0.5){ return Math.sqrt(Math.PI); } // popular gamma(1/2) |
---|
| 41 | if(z < -0.5){ // remember this z is really z-1 |
---|
| 42 | return Math.PI / (Math.sin(Math.PI * (z + 1)) * this._gamma(-z)); // reflection |
---|
| 43 | } |
---|
| 44 | // assert: -0.5 < z < 1 |
---|
| 45 | // Spouge approximation algorithm |
---|
| 46 | var a = 13; |
---|
| 47 | // c[0] = sqrt(2*PI) / exp(a) |
---|
| 48 | // var kfact = 1 |
---|
| 49 | // for (var k=1; k < a; k++){ |
---|
| 50 | // c[k] = pow(-k + a, k - 0.5) * exp(-k) / kfact |
---|
| 51 | // kfact *= -k // (-1)^(k-1) * (k-1)! |
---|
| 52 | // } |
---|
| 53 | var c = [ // precomputed from the above algorithm |
---|
| 54 | 5.6658056015186327e-6, |
---|
| 55 | 1.2743717663379679, |
---|
| 56 | -4.9374199093155115, |
---|
| 57 | 7.8720267032485961, |
---|
| 58 | -6.6760503749436087, |
---|
| 59 | 3.2525298444485167, |
---|
| 60 | -9.1852521441026269e-1, |
---|
| 61 | 1.4474022977730785e-1, |
---|
| 62 | -1.1627561382389853e-2, |
---|
| 63 | 4.0117980757066622e-4, |
---|
| 64 | -4.2652458386405744e-6, |
---|
| 65 | 6.6651913290336086e-9, |
---|
| 66 | -1.5392547381874824e-13 |
---|
| 67 | ]; |
---|
| 68 | var sum = c[0]; |
---|
| 69 | for (var k=1; k < a; k++){ |
---|
| 70 | sum += c[k] / (z + k); |
---|
| 71 | } |
---|
| 72 | return answer * Math.pow(z + a, z + 0.5) / Math.exp(z) * sum; |
---|
| 73 | }, |
---|
| 74 | |
---|
| 75 | factorial: function(/* Number */n){ |
---|
| 76 | // summary: |
---|
| 77 | // Return the factorial of n |
---|
| 78 | return this._gamma(n+1); // Number |
---|
| 79 | }, |
---|
| 80 | |
---|
| 81 | permutations: function(/* Number */n, /* Number */k){ |
---|
| 82 | // summary: |
---|
| 83 | // TODO |
---|
| 84 | if(n==0 || k==0){ |
---|
| 85 | return 1; // Number |
---|
| 86 | } |
---|
| 87 | return this.factorial(n) / this.factorial(n-k); |
---|
| 88 | }, |
---|
| 89 | |
---|
| 90 | combinations: function(/* Number */n, /* Number */r){ |
---|
| 91 | // summary: |
---|
| 92 | // TODO |
---|
| 93 | if(n==0 || r==0){ |
---|
| 94 | return 1; // Number |
---|
| 95 | } |
---|
| 96 | return this.factorial(n) / (this.factorial(n-r) * this.factorial(r)); // Number |
---|
| 97 | }, |
---|
| 98 | |
---|
| 99 | bernstein: function(/* Number */t, /* Number */n, /* Number */ i){ |
---|
| 100 | // summary: |
---|
| 101 | // TODO |
---|
| 102 | return this.combinations(n, i) * Math.pow(t, i) * Math.pow(1-t, n-i); // Number |
---|
| 103 | }, |
---|
| 104 | |
---|
| 105 | gaussian: function(){ |
---|
| 106 | // summary: |
---|
| 107 | // Return a random number based on the Gaussian algo. |
---|
| 108 | var k=2; |
---|
| 109 | do{ |
---|
| 110 | var i=2*Math.random()-1; |
---|
| 111 | var j=2*Math.random()-1; |
---|
| 112 | k = i*i+j*j; |
---|
| 113 | }while(k>=1); |
---|
| 114 | return i * Math.sqrt((-2*Math.log(k))/k); // Number |
---|
| 115 | }, |
---|
| 116 | |
---|
| 117 | // create a range of numbers |
---|
| 118 | range: function(/* Number */a, /* Number? */b, /* Number? */step){ |
---|
| 119 | // summary: |
---|
| 120 | // Create a range of numbers based on the parameters. |
---|
| 121 | if(arguments.length<2){ |
---|
| 122 | b=a,a=0; |
---|
| 123 | } |
---|
| 124 | var range=[], s=step||1, i; |
---|
| 125 | if(s>0){ |
---|
| 126 | for(i=a; i<b; i+=s){ |
---|
| 127 | range.push(i); |
---|
| 128 | } |
---|
| 129 | }else{ |
---|
| 130 | if(s<0){ |
---|
| 131 | for(i=a; i>b; i+=s){ |
---|
| 132 | range.push(i); |
---|
| 133 | } |
---|
| 134 | }else{ |
---|
| 135 | throw new Error("dojox.math.range: step must not be zero."); |
---|
| 136 | } |
---|
| 137 | } |
---|
| 138 | return range; // Array |
---|
| 139 | }, |
---|
| 140 | |
---|
| 141 | distance: function(/* Array */a, /* Array */b){ |
---|
| 142 | // summary: |
---|
| 143 | // Calculate the distance between point A and point B |
---|
| 144 | return Math.sqrt(Math.pow(b[0]-a[0],2)+Math.pow(b[1]-a[1],2)); // Number |
---|
| 145 | }, |
---|
| 146 | |
---|
| 147 | midpoint: function(/* Array */a, /* Array */b){ |
---|
| 148 | // summary: |
---|
| 149 | // Calculate the midpoint between points A and B. A and B may be multidimensional. |
---|
| 150 | if(a.length!=b.length){ |
---|
| 151 | console.error("dojox.math.midpoint: Points A and B are not the same dimensionally.", a, b); |
---|
| 152 | } |
---|
| 153 | var m=[]; |
---|
| 154 | for(var i=0; i<a.length; i++){ |
---|
| 155 | m[i]=(a[i]+b[i])/2; |
---|
| 156 | } |
---|
| 157 | return m; // Array |
---|
| 158 | } |
---|
| 159 | }); |
---|
| 160 | |
---|
| 161 | return dojox.math; |
---|
| 162 | }); |
---|