[483] | 1 | // AMD-ID "dojox/math/stats" |
---|
| 2 | define(["dojo", "../main"], function(dojo, dojox) { |
---|
| 3 | |
---|
| 4 | dojo.getObject("math.stats", true, dojox); |
---|
| 5 | |
---|
| 6 | var st = dojox.math.stats; |
---|
| 7 | dojo.mixin(st, { |
---|
| 8 | sd: function(/* Number[] */a){ |
---|
| 9 | // summary: |
---|
| 10 | // Returns the standard deviation of the passed arguments. |
---|
| 11 | return Math.sqrt(st.variance(a)); // Number |
---|
| 12 | }, |
---|
| 13 | |
---|
| 14 | variance: function(/* Number[] */a){ |
---|
| 15 | // summary: |
---|
| 16 | // Find the variance in the passed array of numbers. |
---|
| 17 | var mean=0, squares=0; |
---|
| 18 | dojo.forEach(a, function(item){ |
---|
| 19 | mean+=item; |
---|
| 20 | squares+=Math.pow(item,2); |
---|
| 21 | }); |
---|
| 22 | return (squares/a.length)-Math.pow(mean/a.length, 2); // Number |
---|
| 23 | }, |
---|
| 24 | |
---|
| 25 | bestFit: function(/* Object[]|Number[] */ a, /* String? */ xProp, /* String? */ yProp){ |
---|
| 26 | // summary: |
---|
| 27 | // Calculate the slope and intercept in a linear fashion. An array |
---|
| 28 | // of objects is expected; optionally you can pass in the property |
---|
| 29 | // names for "x" and "y", else x/y is used as the default. If you |
---|
| 30 | // pass an array of numbers, it will be mapped to a set of {x,y} objects |
---|
| 31 | // where x = the array index. |
---|
| 32 | xProp = xProp || "x", yProp = yProp || "y"; |
---|
| 33 | if(a[0] !== undefined && typeof(a[0]) == "number"){ |
---|
| 34 | // this is an array of numbers, so use the index as x. |
---|
| 35 | a = dojo.map(a, function(item, idx){ |
---|
| 36 | return { x: idx, y: item }; |
---|
| 37 | }); |
---|
| 38 | } |
---|
| 39 | |
---|
| 40 | var sx = 0, sy = 0, sxx = 0, syy = 0, sxy = 0, stt = 0, sts = 0, n = a.length, t; |
---|
| 41 | for(var i=0; i<n; i++){ |
---|
| 42 | sx += a[i][xProp]; |
---|
| 43 | sy += a[i][yProp]; |
---|
| 44 | sxx += Math.pow(a[i][xProp], 2); |
---|
| 45 | syy += Math.pow(a[i][yProp], 2); |
---|
| 46 | sxy += a[i][xProp] * a[i][yProp]; |
---|
| 47 | } |
---|
| 48 | |
---|
| 49 | // we use the following because it's more efficient and accurate for determining the slope. |
---|
| 50 | for(i=0; i<n; i++){ |
---|
| 51 | t = a[i][xProp] - sx/n; |
---|
| 52 | stt += t*t; |
---|
| 53 | sts += t*a[i][yProp]; |
---|
| 54 | } |
---|
| 55 | var slope = sts/(stt||1); // prevent divide by zero. |
---|
| 56 | |
---|
| 57 | // get Pearson's R |
---|
| 58 | var d = Math.sqrt((sxx - Math.pow(sx,2)/n) * (syy - Math.pow(sy,2)/n)); |
---|
| 59 | if(d === 0){ |
---|
| 60 | throw new Error("dojox.math.stats.bestFit: the denominator for Pearson's R is 0."); |
---|
| 61 | } |
---|
| 62 | |
---|
| 63 | var r = (sxy-(sx*sy/n)) / d; |
---|
| 64 | var r2 = Math.pow(r, 2); |
---|
| 65 | if(slope < 0){ |
---|
| 66 | r = -r; |
---|
| 67 | } |
---|
| 68 | |
---|
| 69 | // to use: y = slope*x + intercept; |
---|
| 70 | return { // Object |
---|
| 71 | slope: slope, |
---|
| 72 | intercept: (sy - sx*slope)/(n||1), |
---|
| 73 | r: r, |
---|
| 74 | r2: r2 |
---|
| 75 | }; |
---|
| 76 | }, |
---|
| 77 | |
---|
| 78 | forecast: function(/* Object[]|Number[] */a, /* Number */x, /* String? */xProp, /* String? */yProp){ |
---|
| 79 | // summary: |
---|
| 80 | // Using the bestFit algorithm above, find y for the given x. |
---|
| 81 | var fit = st.bestFit(a, xProp, yProp); |
---|
| 82 | return (fit.slope * x) + fit.intercept; // Number |
---|
| 83 | }, |
---|
| 84 | |
---|
| 85 | mean: function(/* Number[] */a){ |
---|
| 86 | // summary: |
---|
| 87 | // Returns the mean value in the passed array. |
---|
| 88 | var t=0; |
---|
| 89 | dojo.forEach(a, function(v){ |
---|
| 90 | t += v; |
---|
| 91 | }); |
---|
| 92 | return t / Math.max(a.length, 1); // Number |
---|
| 93 | }, |
---|
| 94 | |
---|
| 95 | min: function(/* Number[] */a){ |
---|
| 96 | // summary: |
---|
| 97 | // Returns the min value in the passed array. |
---|
| 98 | return Math.min.apply(null, a); // Number |
---|
| 99 | }, |
---|
| 100 | |
---|
| 101 | max: function(/* Number[] */a){ |
---|
| 102 | // summary: |
---|
| 103 | // Returns the max value in the passed array. |
---|
| 104 | return Math.max.apply(null, a); // Number |
---|
| 105 | }, |
---|
| 106 | |
---|
| 107 | median: function(/* Number[] */a){ |
---|
| 108 | // summary: |
---|
| 109 | // Returns the value closest to the middle from a sorted version of the passed array. |
---|
| 110 | var t = a.slice(0).sort(function(a, b){ return a - b; }); |
---|
| 111 | return (t[Math.floor(a.length/2)] + t[Math.ceil(a.length/2)])/2; // Number |
---|
| 112 | }, |
---|
| 113 | |
---|
| 114 | mode: function(/* Number[] */a){ |
---|
| 115 | // summary: |
---|
| 116 | // Returns the mode from the passed array (number that appears the most often). |
---|
| 117 | // This is not the most efficient method, since it requires a double scan, but |
---|
| 118 | // is ensures accuracy. |
---|
| 119 | var o = {}, r = 0, m = Number.MIN_VALUE; |
---|
| 120 | dojo.forEach(a, function(v){ |
---|
| 121 | (o[v]!==undefined)?o[v]++:o[v]=1; |
---|
| 122 | }); |
---|
| 123 | |
---|
| 124 | // we did the lookup map because we need the number that appears the most. |
---|
| 125 | for(var p in o){ |
---|
| 126 | if(m < o[p]){ |
---|
| 127 | m = o[p], r = p; |
---|
| 128 | } |
---|
| 129 | } |
---|
| 130 | return r; // Number |
---|
| 131 | }, |
---|
| 132 | |
---|
| 133 | sum: function(/* Number[] */a){ |
---|
| 134 | // summary: |
---|
| 135 | // Return the sum of all the numbers in the passed array. Does |
---|
| 136 | // not check to make sure values within a are NaN (should simply |
---|
| 137 | // return NaN). |
---|
| 138 | var sum = 0; |
---|
| 139 | dojo.forEach(a, function(n){ |
---|
| 140 | sum += n; |
---|
| 141 | }); |
---|
| 142 | return sum; // Number |
---|
| 143 | }, |
---|
| 144 | |
---|
| 145 | approxLin: function(a, pos){ |
---|
| 146 | // summary: |
---|
| 147 | // Returns a linearly approximated value from an array using |
---|
| 148 | // a normalized float position value. |
---|
| 149 | // a: Number[] |
---|
| 150 | // a sorted numeric array to be used for the approximation. |
---|
| 151 | // pos: Number |
---|
| 152 | // a position number from 0 to 1. If outside of this range it |
---|
| 153 | // will be clamped. |
---|
| 154 | // returns: Number |
---|
| 155 | var p = pos * (a.length - 1), t = Math.ceil(p), f = t - 1; |
---|
| 156 | if(f < 0){ return a[0]; } |
---|
| 157 | if(t >= a.length){ return a[a.length - 1]; } |
---|
| 158 | return a[f] * (t - p) + a[t] * (p - f); // Number |
---|
| 159 | }, |
---|
| 160 | |
---|
| 161 | summary: function(a, alreadySorted){ |
---|
| 162 | // summary: |
---|
| 163 | // Returns a non-parametric collection of summary statistics: |
---|
| 164 | // the classic five-number summary extended to the Bowley's |
---|
| 165 | // seven-figure summary. |
---|
| 166 | // a: Number[] |
---|
| 167 | // a numeric array to be appraised. |
---|
| 168 | // alreadySorted: Boolean? |
---|
| 169 | // a Boolean flag to indicated that the array is already sorted. |
---|
| 170 | // This is an optional flag purely to improve the performance. |
---|
| 171 | // If skipped, the array will be assumed unsorted. |
---|
| 172 | // returns: Object |
---|
| 173 | if(!alreadySorted){ |
---|
| 174 | a = a.slice(0); // copy the array |
---|
| 175 | a.sort(function(a, b){ return a - b; }); // sort it properly |
---|
| 176 | } |
---|
| 177 | var l = st.approxLin, |
---|
| 178 | result = { |
---|
| 179 | // the five-number summary |
---|
| 180 | min: a[0], // minimum |
---|
| 181 | p25: l(a, 0.25), // lower quartile |
---|
| 182 | med: l(a, 0.5), // median |
---|
| 183 | p75: l(a, 0.75), // upper quartile |
---|
| 184 | max: a[a.length - 1], // maximum |
---|
| 185 | // extended to the Bowley's seven-figure summary |
---|
| 186 | p10: l(a, 0.1), // first decile |
---|
| 187 | p90: l(a, 0.9) // last decile |
---|
| 188 | }; |
---|
| 189 | return result; // Object |
---|
| 190 | } |
---|
| 191 | }); |
---|
| 192 | |
---|
| 193 | return dojox.math.stats; |
---|
| 194 | }); |
---|