1 | dojo.provide("dojox.sql._crypto"); |
---|
2 | dojo.mixin(dojox.sql._crypto, { |
---|
3 | // summary: |
---|
4 | // dojox.sql cryptography code |
---|
5 | // description: |
---|
6 | // Taken from http://www.movable-type.co.uk/scripts/aes.html by |
---|
7 | // Chris Veness (CLA signed); adapted for Dojo and Google Gears Worker Pool |
---|
8 | // by Brad Neuberg, bkn3@columbia.edu |
---|
9 | |
---|
10 | // _POOL_SIZE: |
---|
11 | // Size of worker pool to create to help with crypto |
---|
12 | _POOL_SIZE: 100, |
---|
13 | |
---|
14 | encrypt: function(plaintext, password, callback){ |
---|
15 | // summary: |
---|
16 | // Use Corrected Block TEA to encrypt plaintext using password |
---|
17 | // (note plaintext & password must be strings not string objects). |
---|
18 | // Results will be returned to the 'callback' asychronously. |
---|
19 | this._initWorkerPool(); |
---|
20 | |
---|
21 | var msg ={plaintext: plaintext, password: password}; |
---|
22 | msg = dojo.toJson(msg); |
---|
23 | msg = "encr:" + String(msg); |
---|
24 | |
---|
25 | this._assignWork(msg, callback); |
---|
26 | }, |
---|
27 | |
---|
28 | decrypt: function(ciphertext, password, callback){ |
---|
29 | // summary: |
---|
30 | // Use Corrected Block TEA to decrypt ciphertext using password |
---|
31 | // (note ciphertext & password must be strings not string objects). |
---|
32 | // Results will be returned to the 'callback' asychronously. |
---|
33 | this._initWorkerPool(); |
---|
34 | |
---|
35 | var msg = {ciphertext: ciphertext, password: password}; |
---|
36 | msg = dojo.toJson(msg); |
---|
37 | msg = "decr:" + String(msg); |
---|
38 | |
---|
39 | this._assignWork(msg, callback); |
---|
40 | }, |
---|
41 | |
---|
42 | _initWorkerPool: function(){ |
---|
43 | // bugs in Google Gears prevents us from dynamically creating |
---|
44 | // and destroying workers as we need them -- the worker |
---|
45 | // pool functionality stops working after a number of crypto |
---|
46 | // cycles (probably related to a memory leak in Google Gears). |
---|
47 | // this is too bad, since it results in much simpler code. |
---|
48 | |
---|
49 | // instead, we have to create a pool of workers and reuse them. we |
---|
50 | // keep a stack of 'unemployed' Worker IDs that are currently not working. |
---|
51 | // if a work request comes in, we pop off the 'unemployed' stack |
---|
52 | // and put them to work, storing them in an 'employed' hashtable, |
---|
53 | // keyed by their Worker ID with the value being the callback function |
---|
54 | // that wants the result. when an employed worker is done, we get |
---|
55 | // a message in our 'manager' which adds this worker back to the |
---|
56 | // unemployed stack and routes the result to the callback that |
---|
57 | // wanted it. if all the workers were employed in the past but |
---|
58 | // more work needed to be done (i.e. it's a tight labor pool ;) |
---|
59 | // then the work messages are pushed onto |
---|
60 | // a 'handleMessage' queue as an object tuple{msg: msg, callback: callback} |
---|
61 | |
---|
62 | if(!this._manager){ |
---|
63 | try{ |
---|
64 | this._manager = google.gears.factory.create("beta.workerpool", "1.0"); |
---|
65 | this._unemployed = []; |
---|
66 | this._employed ={}; |
---|
67 | this._handleMessage = []; |
---|
68 | |
---|
69 | var self = this; |
---|
70 | this._manager.onmessage = function(msg, sender){ |
---|
71 | // get the callback necessary to serve this result |
---|
72 | var callback = self._employed["_" + sender]; |
---|
73 | |
---|
74 | // make this worker unemployed |
---|
75 | self._employed["_" + sender] = undefined; |
---|
76 | self._unemployed.push("_" + sender); |
---|
77 | |
---|
78 | // see if we need to assign new work |
---|
79 | // that was queued up needing to be done |
---|
80 | if(self._handleMessage.length){ |
---|
81 | var handleMe = self._handleMessage.shift(); |
---|
82 | self._assignWork(handleMe.msg, handleMe.callback); |
---|
83 | } |
---|
84 | |
---|
85 | // return results |
---|
86 | callback(msg); |
---|
87 | }; |
---|
88 | |
---|
89 | var workerInit = "function _workerInit(){" |
---|
90 | + "gearsWorkerPool.onmessage = " |
---|
91 | + String(this._workerHandler) |
---|
92 | + ";" |
---|
93 | + "}"; |
---|
94 | |
---|
95 | var code = workerInit + " _workerInit();"; |
---|
96 | |
---|
97 | // create our worker pool |
---|
98 | for(var i = 0; i < this._POOL_SIZE; i++){ |
---|
99 | this._unemployed.push("_" + this._manager.createWorker(code)); |
---|
100 | } |
---|
101 | }catch(exp){ |
---|
102 | throw exp.message||exp; |
---|
103 | } |
---|
104 | } |
---|
105 | }, |
---|
106 | |
---|
107 | _assignWork: function(msg, callback){ |
---|
108 | // can we immediately assign this work? |
---|
109 | if(!this._handleMessage.length && this._unemployed.length){ |
---|
110 | // get an unemployed worker |
---|
111 | var workerID = this._unemployed.shift().substring(1); // remove _ |
---|
112 | |
---|
113 | // list this worker as employed |
---|
114 | this._employed["_" + workerID] = callback; |
---|
115 | |
---|
116 | // do the worke |
---|
117 | this._manager.sendMessage(msg, parseInt(workerID,10)); |
---|
118 | }else{ |
---|
119 | // we have to queue it up |
---|
120 | this._handleMessage ={msg: msg, callback: callback}; |
---|
121 | } |
---|
122 | }, |
---|
123 | |
---|
124 | _workerHandler: function(msg, sender){ |
---|
125 | |
---|
126 | /* Begin AES Implementation */ |
---|
127 | |
---|
128 | /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */ |
---|
129 | |
---|
130 | // Sbox is pre-computed multiplicative inverse in GF(2^8) used in SubBytes and KeyExpansion [§5.1.1] |
---|
131 | var Sbox = [0x63,0x7c,0x77,0x7b,0xf2,0x6b,0x6f,0xc5,0x30,0x01,0x67,0x2b,0xfe,0xd7,0xab,0x76, |
---|
132 | 0xca,0x82,0xc9,0x7d,0xfa,0x59,0x47,0xf0,0xad,0xd4,0xa2,0xaf,0x9c,0xa4,0x72,0xc0, |
---|
133 | 0xb7,0xfd,0x93,0x26,0x36,0x3f,0xf7,0xcc,0x34,0xa5,0xe5,0xf1,0x71,0xd8,0x31,0x15, |
---|
134 | 0x04,0xc7,0x23,0xc3,0x18,0x96,0x05,0x9a,0x07,0x12,0x80,0xe2,0xeb,0x27,0xb2,0x75, |
---|
135 | 0x09,0x83,0x2c,0x1a,0x1b,0x6e,0x5a,0xa0,0x52,0x3b,0xd6,0xb3,0x29,0xe3,0x2f,0x84, |
---|
136 | 0x53,0xd1,0x00,0xed,0x20,0xfc,0xb1,0x5b,0x6a,0xcb,0xbe,0x39,0x4a,0x4c,0x58,0xcf, |
---|
137 | 0xd0,0xef,0xaa,0xfb,0x43,0x4d,0x33,0x85,0x45,0xf9,0x02,0x7f,0x50,0x3c,0x9f,0xa8, |
---|
138 | 0x51,0xa3,0x40,0x8f,0x92,0x9d,0x38,0xf5,0xbc,0xb6,0xda,0x21,0x10,0xff,0xf3,0xd2, |
---|
139 | 0xcd,0x0c,0x13,0xec,0x5f,0x97,0x44,0x17,0xc4,0xa7,0x7e,0x3d,0x64,0x5d,0x19,0x73, |
---|
140 | 0x60,0x81,0x4f,0xdc,0x22,0x2a,0x90,0x88,0x46,0xee,0xb8,0x14,0xde,0x5e,0x0b,0xdb, |
---|
141 | 0xe0,0x32,0x3a,0x0a,0x49,0x06,0x24,0x5c,0xc2,0xd3,0xac,0x62,0x91,0x95,0xe4,0x79, |
---|
142 | 0xe7,0xc8,0x37,0x6d,0x8d,0xd5,0x4e,0xa9,0x6c,0x56,0xf4,0xea,0x65,0x7a,0xae,0x08, |
---|
143 | 0xba,0x78,0x25,0x2e,0x1c,0xa6,0xb4,0xc6,0xe8,0xdd,0x74,0x1f,0x4b,0xbd,0x8b,0x8a, |
---|
144 | 0x70,0x3e,0xb5,0x66,0x48,0x03,0xf6,0x0e,0x61,0x35,0x57,0xb9,0x86,0xc1,0x1d,0x9e, |
---|
145 | 0xe1,0xf8,0x98,0x11,0x69,0xd9,0x8e,0x94,0x9b,0x1e,0x87,0xe9,0xce,0x55,0x28,0xdf, |
---|
146 | 0x8c,0xa1,0x89,0x0d,0xbf,0xe6,0x42,0x68,0x41,0x99,0x2d,0x0f,0xb0,0x54,0xbb,0x16]; |
---|
147 | |
---|
148 | // Rcon is Round Constant used for the Key Expansion [1st col is 2^(r-1) in GF(2^8)] [§5.2] |
---|
149 | var Rcon = [ [0x00, 0x00, 0x00, 0x00], |
---|
150 | [0x01, 0x00, 0x00, 0x00], |
---|
151 | [0x02, 0x00, 0x00, 0x00], |
---|
152 | [0x04, 0x00, 0x00, 0x00], |
---|
153 | [0x08, 0x00, 0x00, 0x00], |
---|
154 | [0x10, 0x00, 0x00, 0x00], |
---|
155 | [0x20, 0x00, 0x00, 0x00], |
---|
156 | [0x40, 0x00, 0x00, 0x00], |
---|
157 | [0x80, 0x00, 0x00, 0x00], |
---|
158 | [0x1b, 0x00, 0x00, 0x00], |
---|
159 | [0x36, 0x00, 0x00, 0x00] ]; |
---|
160 | |
---|
161 | /* |
---|
162 | * AES Cipher function: encrypt 'input' with Rijndael algorithm |
---|
163 | * |
---|
164 | * takes byte-array 'input' (16 bytes) |
---|
165 | * 2D byte-array key schedule 'w' (Nr+1 x Nb bytes) |
---|
166 | * |
---|
167 | * applies Nr rounds (10/12/14) using key schedule w for 'add round key' stage |
---|
168 | * |
---|
169 | * returns byte-array encrypted value (16 bytes) |
---|
170 | */ |
---|
171 | function Cipher(input, w) { // main Cipher function [§5.1] |
---|
172 | var Nb = 4; // block size (in words): no of columns in state (fixed at 4 for AES) |
---|
173 | var Nr = w.length/Nb - 1; // no of rounds: 10/12/14 for 128/192/256-bit keys |
---|
174 | |
---|
175 | var state = [[],[],[],[]]; // initialise 4xNb byte-array 'state' with input [§3.4] |
---|
176 | for (var i=0; i<4*Nb; i++) state[i%4][Math.floor(i/4)] = input[i]; |
---|
177 | |
---|
178 | state = AddRoundKey(state, w, 0, Nb); |
---|
179 | |
---|
180 | for (var round=1; round<Nr; round++) { |
---|
181 | state = SubBytes(state, Nb); |
---|
182 | state = ShiftRows(state, Nb); |
---|
183 | state = MixColumns(state, Nb); |
---|
184 | state = AddRoundKey(state, w, round, Nb); |
---|
185 | } |
---|
186 | |
---|
187 | state = SubBytes(state, Nb); |
---|
188 | state = ShiftRows(state, Nb); |
---|
189 | state = AddRoundKey(state, w, Nr, Nb); |
---|
190 | |
---|
191 | var output = new Array(4*Nb); // convert state to 1-d array before returning [§3.4] |
---|
192 | for (var i=0; i<4*Nb; i++) output[i] = state[i%4][Math.floor(i/4)]; |
---|
193 | return output; |
---|
194 | } |
---|
195 | |
---|
196 | |
---|
197 | function SubBytes(s, Nb) { // apply SBox to state S [§5.1.1] |
---|
198 | for (var r=0; r<4; r++) { |
---|
199 | for (var c=0; c<Nb; c++) s[r][c] = Sbox[s[r][c]]; |
---|
200 | } |
---|
201 | return s; |
---|
202 | } |
---|
203 | |
---|
204 | |
---|
205 | function ShiftRows(s, Nb) { // shift row r of state S left by r bytes [§5.1.2] |
---|
206 | var t = new Array(4); |
---|
207 | for (var r=1; r<4; r++) { |
---|
208 | for (var c=0; c<4; c++) t[c] = s[r][(c+r)%Nb]; // shift into temp copy |
---|
209 | for (var c=0; c<4; c++) s[r][c] = t[c]; // and copy back |
---|
210 | } // note that this will work for Nb=4,5,6, but not 7,8 (always 4 for AES): |
---|
211 | return s; // see fp.gladman.plus.com/cryptography_technology/rijndael/aes.spec.311.pdf |
---|
212 | } |
---|
213 | |
---|
214 | |
---|
215 | function MixColumns(s, Nb) { // combine bytes of each col of state S [§5.1.3] |
---|
216 | for (var c=0; c<4; c++) { |
---|
217 | var a = new Array(4); // 'a' is a copy of the current column from 's' |
---|
218 | var b = new Array(4); // 'b' is aâ¢{02} in GF(2^8) |
---|
219 | for (var i=0; i<4; i++) { |
---|
220 | a[i] = s[i][c]; |
---|
221 | b[i] = s[i][c]&0x80 ? s[i][c]<<1 ^ 0x011b : s[i][c]<<1; |
---|
222 | } |
---|
223 | // a[n] ^ b[n] is aâ¢{03} in GF(2^8) |
---|
224 | s[0][c] = b[0] ^ a[1] ^ b[1] ^ a[2] ^ a[3]; // 2*a0 + 3*a1 + a2 + a3 |
---|
225 | s[1][c] = a[0] ^ b[1] ^ a[2] ^ b[2] ^ a[3]; // a0 * 2*a1 + 3*a2 + a3 |
---|
226 | s[2][c] = a[0] ^ a[1] ^ b[2] ^ a[3] ^ b[3]; // a0 + a1 + 2*a2 + 3*a3 |
---|
227 | s[3][c] = a[0] ^ b[0] ^ a[1] ^ a[2] ^ b[3]; // 3*a0 + a1 + a2 + 2*a3 |
---|
228 | } |
---|
229 | return s; |
---|
230 | } |
---|
231 | |
---|
232 | |
---|
233 | function AddRoundKey(state, w, rnd, Nb) { // xor Round Key into state S [§5.1.4] |
---|
234 | for (var r=0; r<4; r++) { |
---|
235 | for (var c=0; c<Nb; c++) state[r][c] ^= w[rnd*4+c][r]; |
---|
236 | } |
---|
237 | return state; |
---|
238 | } |
---|
239 | |
---|
240 | |
---|
241 | function KeyExpansion(key) { // generate Key Schedule (byte-array Nr+1 x Nb) from Key [§5.2] |
---|
242 | var Nb = 4; // block size (in words): no of columns in state (fixed at 4 for AES) |
---|
243 | var Nk = key.length/4 // key length (in words): 4/6/8 for 128/192/256-bit keys |
---|
244 | var Nr = Nk + 6; // no of rounds: 10/12/14 for 128/192/256-bit keys |
---|
245 | |
---|
246 | var w = new Array(Nb*(Nr+1)); |
---|
247 | var temp = new Array(4); |
---|
248 | |
---|
249 | for (var i=0; i<Nk; i++) { |
---|
250 | var r = [key[4*i], key[4*i+1], key[4*i+2], key[4*i+3]]; |
---|
251 | w[i] = r; |
---|
252 | } |
---|
253 | |
---|
254 | for (var i=Nk; i<(Nb*(Nr+1)); i++) { |
---|
255 | w[i] = new Array(4); |
---|
256 | for (var t=0; t<4; t++) temp[t] = w[i-1][t]; |
---|
257 | if (i % Nk == 0) { |
---|
258 | temp = SubWord(RotWord(temp)); |
---|
259 | for (var t=0; t<4; t++) temp[t] ^= Rcon[i/Nk][t]; |
---|
260 | } else if (Nk > 6 && i%Nk == 4) { |
---|
261 | temp = SubWord(temp); |
---|
262 | } |
---|
263 | for (var t=0; t<4; t++) w[i][t] = w[i-Nk][t] ^ temp[t]; |
---|
264 | } |
---|
265 | |
---|
266 | return w; |
---|
267 | } |
---|
268 | |
---|
269 | function SubWord(w) { // apply SBox to 4-byte word w |
---|
270 | for (var i=0; i<4; i++) w[i] = Sbox[w[i]]; |
---|
271 | return w; |
---|
272 | } |
---|
273 | |
---|
274 | function RotWord(w) { // rotate 4-byte word w left by one byte |
---|
275 | w[4] = w[0]; |
---|
276 | for (var i=0; i<4; i++) w[i] = w[i+1]; |
---|
277 | return w; |
---|
278 | } |
---|
279 | |
---|
280 | /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */ |
---|
281 | |
---|
282 | /* |
---|
283 | * Use AES to encrypt 'plaintext' with 'password' using 'nBits' key, in 'Counter' mode of operation |
---|
284 | * - see http://csrc.nist.gov/publications/nistpubs/800-38a/sp800-38a.pdf |
---|
285 | * for each block |
---|
286 | * - outputblock = cipher(counter, key) |
---|
287 | * - cipherblock = plaintext xor outputblock |
---|
288 | */ |
---|
289 | function AESEncryptCtr(plaintext, password, nBits) { |
---|
290 | if (!(nBits==128 || nBits==192 || nBits==256)) return ''; // standard allows 128/192/256 bit keys |
---|
291 | |
---|
292 | // for this example script, generate the key by applying Cipher to 1st 16/24/32 chars of password; |
---|
293 | // for real-world applications, a more secure approach would be to hash the password e.g. with SHA-1 |
---|
294 | var nBytes = nBits/8; // no bytes in key |
---|
295 | var pwBytes = new Array(nBytes); |
---|
296 | for (var i=0; i<nBytes; i++) pwBytes[i] = password.charCodeAt(i) & 0xff; |
---|
297 | |
---|
298 | var key = Cipher(pwBytes, KeyExpansion(pwBytes)); |
---|
299 | |
---|
300 | key = key.concat(key.slice(0, nBytes-16)); // key is now 16/24/32 bytes long |
---|
301 | |
---|
302 | // initialise counter block (NIST SP800-38A §B.2): millisecond time-stamp for nonce in 1st 8 bytes, |
---|
303 | // block counter in 2nd 8 bytes |
---|
304 | var blockSize = 16; // block size fixed at 16 bytes / 128 bits (Nb=4) for AES |
---|
305 | var counterBlock = new Array(blockSize); // block size fixed at 16 bytes / 128 bits (Nb=4) for AES |
---|
306 | var nonce = (new Date()).getTime(); // milliseconds since 1-Jan-1970 |
---|
307 | |
---|
308 | // encode nonce in two stages to cater for JavaScript 32-bit limit on bitwise ops |
---|
309 | for (var i=0; i<4; i++) counterBlock[i] = (nonce >>> i*8) & 0xff; |
---|
310 | for (var i=0; i<4; i++) counterBlock[i+4] = (nonce/0x100000000 >>> i*8) & 0xff; |
---|
311 | |
---|
312 | // generate key schedule - an expansion of the key into distinct Key Rounds for each round |
---|
313 | var keySchedule = KeyExpansion(key); |
---|
314 | |
---|
315 | var blockCount = Math.ceil(plaintext.length/blockSize); |
---|
316 | var ciphertext = new Array(blockCount); // ciphertext as array of strings |
---|
317 | |
---|
318 | for (var b=0; b<blockCount; b++) { |
---|
319 | // set counter (block #) in last 8 bytes of counter block (leaving nonce in 1st 8 bytes) |
---|
320 | // again done in two stages for 32-bit ops |
---|
321 | for (var c=0; c<4; c++) counterBlock[15-c] = (b >>> c*8) & 0xff; |
---|
322 | for (var c=0; c<4; c++) counterBlock[15-c-4] = (b/0x100000000 >>> c*8) |
---|
323 | |
---|
324 | var cipherCntr = Cipher(counterBlock, keySchedule); // -- encrypt counter block -- |
---|
325 | |
---|
326 | // calculate length of final block: |
---|
327 | var blockLength = b<blockCount-1 ? blockSize : (plaintext.length-1)%blockSize+1; |
---|
328 | |
---|
329 | var ct = ''; |
---|
330 | for (var i=0; i<blockLength; i++) { // -- xor plaintext with ciphered counter byte-by-byte -- |
---|
331 | var plaintextByte = plaintext.charCodeAt(b*blockSize+i); |
---|
332 | var cipherByte = plaintextByte ^ cipherCntr[i]; |
---|
333 | ct += String.fromCharCode(cipherByte); |
---|
334 | } |
---|
335 | // ct is now ciphertext for this block |
---|
336 | |
---|
337 | ciphertext[b] = escCtrlChars(ct); // escape troublesome characters in ciphertext |
---|
338 | } |
---|
339 | |
---|
340 | // convert the nonce to a string to go on the front of the ciphertext |
---|
341 | var ctrTxt = ''; |
---|
342 | for (var i=0; i<8; i++) ctrTxt += String.fromCharCode(counterBlock[i]); |
---|
343 | ctrTxt = escCtrlChars(ctrTxt); |
---|
344 | |
---|
345 | // use '-' to separate blocks, use Array.join to concatenate arrays of strings for efficiency |
---|
346 | return ctrTxt + '-' + ciphertext.join('-'); |
---|
347 | } |
---|
348 | |
---|
349 | |
---|
350 | /* |
---|
351 | * Use AES to decrypt 'ciphertext' with 'password' using 'nBits' key, in Counter mode of operation |
---|
352 | * |
---|
353 | * for each block |
---|
354 | * - outputblock = cipher(counter, key) |
---|
355 | * - cipherblock = plaintext xor outputblock |
---|
356 | */ |
---|
357 | function AESDecryptCtr(ciphertext, password, nBits) { |
---|
358 | if (!(nBits==128 || nBits==192 || nBits==256)) return ''; // standard allows 128/192/256 bit keys |
---|
359 | |
---|
360 | var nBytes = nBits/8; // no bytes in key |
---|
361 | var pwBytes = new Array(nBytes); |
---|
362 | for (var i=0; i<nBytes; i++) pwBytes[i] = password.charCodeAt(i) & 0xff; |
---|
363 | var pwKeySchedule = KeyExpansion(pwBytes); |
---|
364 | var key = Cipher(pwBytes, pwKeySchedule); |
---|
365 | key = key.concat(key.slice(0, nBytes-16)); // key is now 16/24/32 bytes long |
---|
366 | |
---|
367 | var keySchedule = KeyExpansion(key); |
---|
368 | |
---|
369 | ciphertext = ciphertext.split('-'); // split ciphertext into array of block-length strings |
---|
370 | |
---|
371 | // recover nonce from 1st element of ciphertext |
---|
372 | var blockSize = 16; // block size fixed at 16 bytes / 128 bits (Nb=4) for AES |
---|
373 | var counterBlock = new Array(blockSize); |
---|
374 | var ctrTxt = unescCtrlChars(ciphertext[0]); |
---|
375 | for (var i=0; i<8; i++) counterBlock[i] = ctrTxt.charCodeAt(i); |
---|
376 | |
---|
377 | var plaintext = new Array(ciphertext.length-1); |
---|
378 | |
---|
379 | for (var b=1; b<ciphertext.length; b++) { |
---|
380 | // set counter (block #) in last 8 bytes of counter block (leaving nonce in 1st 8 bytes) |
---|
381 | for (var c=0; c<4; c++) counterBlock[15-c] = ((b-1) >>> c*8) & 0xff; |
---|
382 | for (var c=0; c<4; c++) counterBlock[15-c-4] = ((b/0x100000000-1) >>> c*8) & 0xff; |
---|
383 | |
---|
384 | var cipherCntr = Cipher(counterBlock, keySchedule); // encrypt counter block |
---|
385 | |
---|
386 | ciphertext[b] = unescCtrlChars(ciphertext[b]); |
---|
387 | |
---|
388 | var pt = ''; |
---|
389 | for (var i=0; i<ciphertext[b].length; i++) { |
---|
390 | // -- xor plaintext with ciphered counter byte-by-byte -- |
---|
391 | var ciphertextByte = ciphertext[b].charCodeAt(i); |
---|
392 | var plaintextByte = ciphertextByte ^ cipherCntr[i]; |
---|
393 | pt += String.fromCharCode(plaintextByte); |
---|
394 | } |
---|
395 | // pt is now plaintext for this block |
---|
396 | |
---|
397 | plaintext[b-1] = pt; // b-1 'cos no initial nonce block in plaintext |
---|
398 | } |
---|
399 | |
---|
400 | return plaintext.join(''); |
---|
401 | } |
---|
402 | |
---|
403 | /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */ |
---|
404 | |
---|
405 | function escCtrlChars(str) { // escape control chars which might cause problems handling ciphertext |
---|
406 | return str.replace(/[\0\t\n\v\f\r\xa0!-]/g, function(c) { return '!' + c.charCodeAt(0) + '!'; }); |
---|
407 | } // \xa0 to cater for bug in Firefox; include '-' to leave it free for use as a block marker |
---|
408 | |
---|
409 | function unescCtrlChars(str) { // unescape potentially problematic control characters |
---|
410 | return str.replace(/!\d\d?\d?!/g, function(c) { return String.fromCharCode(c.slice(1,-1)); }); |
---|
411 | } |
---|
412 | |
---|
413 | /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */ |
---|
414 | |
---|
415 | function encrypt(plaintext, password){ |
---|
416 | return AESEncryptCtr(plaintext, password, 256); |
---|
417 | } |
---|
418 | |
---|
419 | function decrypt(ciphertext, password){ |
---|
420 | return AESDecryptCtr(ciphertext, password, 256); |
---|
421 | } |
---|
422 | |
---|
423 | /* End AES Implementation */ |
---|
424 | |
---|
425 | var cmd = msg.substr(0,4); |
---|
426 | var arg = msg.substr(5); |
---|
427 | if(cmd == "encr"){ |
---|
428 | arg = eval("(" + arg + ")"); |
---|
429 | var plaintext = arg.plaintext; |
---|
430 | var password = arg.password; |
---|
431 | var results = encrypt(plaintext, password); |
---|
432 | gearsWorkerPool.sendMessage(String(results), sender); |
---|
433 | }else if(cmd == "decr"){ |
---|
434 | arg = eval("(" + arg + ")"); |
---|
435 | var ciphertext = arg.ciphertext; |
---|
436 | var password = arg.password; |
---|
437 | var results = decrypt(ciphertext, password); |
---|
438 | gearsWorkerPool.sendMessage(String(results), sender); |
---|
439 | } |
---|
440 | } |
---|
441 | }); |
---|