[483] | 1 | define([ 'dojo/_base/lang', './_base'], function(lang){ |
---|
| 2 | |
---|
| 3 | dojox.uuid.generateTimeBasedUuid = function(/*String?*/ node){ |
---|
| 4 | // summary: |
---|
| 5 | // This function generates time-based UUIDs, meaning "version 1" UUIDs. |
---|
| 6 | // description: |
---|
| 7 | // For more info, see |
---|
| 8 | // http://www.webdav.org/specs/draft-leach-uuids-guids-01.txt |
---|
| 9 | // http://www.infonuovo.com/dma/csdocs/sketch/instidid.htm |
---|
| 10 | // http://kruithof.xs4all.nl/uuid/uuidgen |
---|
| 11 | // http://www.opengroup.org/onlinepubs/009629399/apdxa.htm#tagcjh_20 |
---|
| 12 | // http://jakarta.apache.org/commons/sandbox/id/apidocs/org/apache/commons/id/uuid/clock/Clock.html |
---|
| 13 | // node: |
---|
| 14 | // A 12-character hex string representing either a pseudo-node or |
---|
| 15 | // hardware-node (an IEEE 802.3 network node). A hardware-node |
---|
| 16 | // will be something like "017bf397618a", always with the first bit |
---|
| 17 | // being 0. A pseudo-node will be something like "f17bf397618a", |
---|
| 18 | // always with the first bit being 1. |
---|
| 19 | // examples: |
---|
| 20 | // string = dojox.uuid.generateTimeBasedUuid(); |
---|
| 21 | // string = dojox.uuid.generateTimeBasedUuid("017bf397618a"); |
---|
| 22 | // dojox.uuid.generateTimeBasedUuid.setNode("017bf397618a"); |
---|
| 23 | // string = dojox.uuid.generateTimeBasedUuid(); // the generated UUID has node == "017bf397618a" |
---|
| 24 | var uuidString = dojox.uuid.generateTimeBasedUuid._generator.generateUuidString(node); |
---|
| 25 | return uuidString; // String |
---|
| 26 | }; |
---|
| 27 | |
---|
| 28 | dojox.uuid.generateTimeBasedUuid.isValidNode = function(/*String?*/ node){ |
---|
| 29 | var HEX_RADIX = 16; |
---|
| 30 | var integer = parseInt(node, HEX_RADIX); |
---|
| 31 | var valid = lang.isString(node) && node.length == 12 && isFinite(integer); |
---|
| 32 | return valid; // Boolean |
---|
| 33 | }; |
---|
| 34 | |
---|
| 35 | dojox.uuid.generateTimeBasedUuid.setNode = function(/*String?*/ node){ |
---|
| 36 | // summary: |
---|
| 37 | // Sets the 'node' value that will be included in generated UUIDs. |
---|
| 38 | // node: A 12-character hex string representing a pseudoNode or hardwareNode. |
---|
| 39 | dojox.uuid.assert((node === null) || this.isValidNode(node)); |
---|
| 40 | this._uniformNode = node; |
---|
| 41 | }; |
---|
| 42 | |
---|
| 43 | dojox.uuid.generateTimeBasedUuid.getNode = function(){ |
---|
| 44 | // summary: |
---|
| 45 | // Returns the 'node' value that will be included in generated UUIDs. |
---|
| 46 | return this._uniformNode; // String (a 12-character hex string representing a pseudoNode or hardwareNode) |
---|
| 47 | }; |
---|
| 48 | |
---|
| 49 | |
---|
| 50 | dojox.uuid.generateTimeBasedUuid._generator = new function(){ |
---|
| 51 | // Number of hours between October 15, 1582 and January 1, 1970: |
---|
| 52 | this.GREGORIAN_CHANGE_OFFSET_IN_HOURS = 3394248; |
---|
| 53 | |
---|
| 54 | // Number of seconds between October 15, 1582 and January 1, 1970: |
---|
| 55 | // dojox.uuid.generateTimeBasedUuid.GREGORIAN_CHANGE_OFFSET_IN_SECONDS = 12219292800; |
---|
| 56 | |
---|
| 57 | // -------------------------------------------------- |
---|
| 58 | // Private variables: |
---|
| 59 | var _uuidPseudoNodeString = null; |
---|
| 60 | var _uuidClockSeqString = null; |
---|
| 61 | var _dateValueOfPreviousUuid = null; |
---|
| 62 | var _nextIntraMillisecondIncrement = 0; |
---|
| 63 | var _cachedMillisecondsBetween1582and1970 = null; |
---|
| 64 | var _cachedHundredNanosecondIntervalsPerMillisecond = null; |
---|
| 65 | |
---|
| 66 | // -------------------------------------------------- |
---|
| 67 | // Private constants: |
---|
| 68 | var HEX_RADIX = 16; |
---|
| 69 | |
---|
| 70 | function _carry(/* array */ arrayA){ |
---|
| 71 | // summary: |
---|
| 72 | // Given an array which holds a 64-bit number broken into 4 16-bit |
---|
| 73 | // elements, this method carries any excess bits (greater than 16-bits) |
---|
| 74 | // from each array element into the next. |
---|
| 75 | // arrayA: An array with 4 elements, each of which is a 16-bit number. |
---|
| 76 | arrayA[2] += arrayA[3] >>> 16; |
---|
| 77 | arrayA[3] &= 0xFFFF; |
---|
| 78 | arrayA[1] += arrayA[2] >>> 16; |
---|
| 79 | arrayA[2] &= 0xFFFF; |
---|
| 80 | arrayA[0] += arrayA[1] >>> 16; |
---|
| 81 | arrayA[1] &= 0xFFFF; |
---|
| 82 | dojox.uuid.assert((arrayA[0] >>> 16) === 0); |
---|
| 83 | } |
---|
| 84 | |
---|
| 85 | function _get64bitArrayFromFloat(/* float */ x){ |
---|
| 86 | // summary: |
---|
| 87 | // Given a floating point number, this method returns an array which |
---|
| 88 | // holds a 64-bit number broken into 4 16-bit elements. |
---|
| 89 | var result = new Array(0, 0, 0, 0); |
---|
| 90 | result[3] = x % 0x10000; |
---|
| 91 | x -= result[3]; |
---|
| 92 | x /= 0x10000; |
---|
| 93 | result[2] = x % 0x10000; |
---|
| 94 | x -= result[2]; |
---|
| 95 | x /= 0x10000; |
---|
| 96 | result[1] = x % 0x10000; |
---|
| 97 | x -= result[1]; |
---|
| 98 | x /= 0x10000; |
---|
| 99 | result[0] = x; |
---|
| 100 | return result; // Array with 4 elements, each of which is a 16-bit number. |
---|
| 101 | } |
---|
| 102 | |
---|
| 103 | function _addTwo64bitArrays(/* array */ arrayA, /* array */ arrayB){ |
---|
| 104 | // summary: |
---|
| 105 | // Takes two arrays, each of which holds a 64-bit number broken into 4 |
---|
| 106 | // 16-bit elements, and returns a new array that holds a 64-bit number |
---|
| 107 | // that is the sum of the two original numbers. |
---|
| 108 | // arrayA: An array with 4 elements, each of which is a 16-bit number. |
---|
| 109 | // arrayB: An array with 4 elements, each of which is a 16-bit number. |
---|
| 110 | dojox.uuid.assert(lang.isArray(arrayA)); |
---|
| 111 | dojox.uuid.assert(lang.isArray(arrayB)); |
---|
| 112 | dojox.uuid.assert(arrayA.length == 4); |
---|
| 113 | dojox.uuid.assert(arrayB.length == 4); |
---|
| 114 | |
---|
| 115 | var result = new Array(0, 0, 0, 0); |
---|
| 116 | result[3] = arrayA[3] + arrayB[3]; |
---|
| 117 | result[2] = arrayA[2] + arrayB[2]; |
---|
| 118 | result[1] = arrayA[1] + arrayB[1]; |
---|
| 119 | result[0] = arrayA[0] + arrayB[0]; |
---|
| 120 | _carry(result); |
---|
| 121 | return result; // Array with 4 elements, each of which is a 16-bit number. |
---|
| 122 | } |
---|
| 123 | |
---|
| 124 | function _multiplyTwo64bitArrays(/* array */ arrayA, /* array */ arrayB){ |
---|
| 125 | // summary: |
---|
| 126 | // Takes two arrays, each of which holds a 64-bit number broken into 4 |
---|
| 127 | // 16-bit elements, and returns a new array that holds a 64-bit number |
---|
| 128 | // that is the product of the two original numbers. |
---|
| 129 | // arrayA: An array with 4 elements, each of which is a 16-bit number. |
---|
| 130 | // arrayB: An array with 4 elements, each of which is a 16-bit number. |
---|
| 131 | dojox.uuid.assert(lang.isArray(arrayA)); |
---|
| 132 | dojox.uuid.assert(lang.isArray(arrayB)); |
---|
| 133 | dojox.uuid.assert(arrayA.length == 4); |
---|
| 134 | dojox.uuid.assert(arrayB.length == 4); |
---|
| 135 | |
---|
| 136 | var overflow = false; |
---|
| 137 | if(arrayA[0] * arrayB[0] !== 0){ overflow = true; } |
---|
| 138 | if(arrayA[0] * arrayB[1] !== 0){ overflow = true; } |
---|
| 139 | if(arrayA[0] * arrayB[2] !== 0){ overflow = true; } |
---|
| 140 | if(arrayA[1] * arrayB[0] !== 0){ overflow = true; } |
---|
| 141 | if(arrayA[1] * arrayB[1] !== 0){ overflow = true; } |
---|
| 142 | if(arrayA[2] * arrayB[0] !== 0){ overflow = true; } |
---|
| 143 | dojox.uuid.assert(!overflow); |
---|
| 144 | |
---|
| 145 | var result = new Array(0, 0, 0, 0); |
---|
| 146 | result[0] += arrayA[0] * arrayB[3]; |
---|
| 147 | _carry(result); |
---|
| 148 | result[0] += arrayA[1] * arrayB[2]; |
---|
| 149 | _carry(result); |
---|
| 150 | result[0] += arrayA[2] * arrayB[1]; |
---|
| 151 | _carry(result); |
---|
| 152 | result[0] += arrayA[3] * arrayB[0]; |
---|
| 153 | _carry(result); |
---|
| 154 | result[1] += arrayA[1] * arrayB[3]; |
---|
| 155 | _carry(result); |
---|
| 156 | result[1] += arrayA[2] * arrayB[2]; |
---|
| 157 | _carry(result); |
---|
| 158 | result[1] += arrayA[3] * arrayB[1]; |
---|
| 159 | _carry(result); |
---|
| 160 | result[2] += arrayA[2] * arrayB[3]; |
---|
| 161 | _carry(result); |
---|
| 162 | result[2] += arrayA[3] * arrayB[2]; |
---|
| 163 | _carry(result); |
---|
| 164 | result[3] += arrayA[3] * arrayB[3]; |
---|
| 165 | _carry(result); |
---|
| 166 | return result; // Array with 4 elements, each of which is a 16-bit number. |
---|
| 167 | } |
---|
| 168 | |
---|
| 169 | function _padWithLeadingZeros(/* string */ string, /* int */ desiredLength){ |
---|
| 170 | // summary: |
---|
| 171 | // Pads a string with leading zeros and returns the result. |
---|
| 172 | // string: A string to add padding to. |
---|
| 173 | // desiredLength: The number of characters the return string should have. |
---|
| 174 | |
---|
| 175 | // examples: |
---|
| 176 | // result = _padWithLeadingZeros("abc", 6); |
---|
| 177 | // dojox.uuid.assert(result == "000abc"); |
---|
| 178 | while(string.length < desiredLength){ |
---|
| 179 | string = "0" + string; |
---|
| 180 | } |
---|
| 181 | return string; // string |
---|
| 182 | } |
---|
| 183 | |
---|
| 184 | function _generateRandomEightCharacterHexString() { |
---|
| 185 | // summary: |
---|
| 186 | // Returns a randomly generated 8-character string of hex digits. |
---|
| 187 | |
---|
| 188 | // FIXME: This probably isn't a very high quality random number. |
---|
| 189 | |
---|
| 190 | // Make random32bitNumber be a randomly generated floating point number |
---|
| 191 | // between 0 and (4,294,967,296 - 1), inclusive. |
---|
| 192 | var random32bitNumber = Math.floor( (Math.random() % 1) * Math.pow(2, 32) ); |
---|
| 193 | |
---|
| 194 | var eightCharacterString = random32bitNumber.toString(HEX_RADIX); |
---|
| 195 | while(eightCharacterString.length < 8){ |
---|
| 196 | eightCharacterString = "0" + eightCharacterString; |
---|
| 197 | } |
---|
| 198 | return eightCharacterString; // String (an 8-character hex string) |
---|
| 199 | } |
---|
| 200 | |
---|
| 201 | this.generateUuidString = function(/*String?*/ node){ |
---|
| 202 | // summary: |
---|
| 203 | // Generates a time-based UUID, meaning a version 1 UUID. |
---|
| 204 | // description: |
---|
| 205 | // JavaScript code running in a browser doesn't have access to the |
---|
| 206 | // IEEE 802.3 address of the computer, so if a node value isn't |
---|
| 207 | // supplied, we generate a random pseudonode value instead. |
---|
| 208 | // node: An optional 12-character string to use as the node in the new UUID. |
---|
| 209 | if(node){ |
---|
| 210 | dojox.uuid.assert(dojox.uuid.generateTimeBasedUuid.isValidNode(node)); |
---|
| 211 | }else{ |
---|
| 212 | if(dojox.uuid.generateTimeBasedUuid._uniformNode){ |
---|
| 213 | node = dojox.uuid.generateTimeBasedUuid._uniformNode; |
---|
| 214 | }else{ |
---|
| 215 | if(!_uuidPseudoNodeString){ |
---|
| 216 | var pseudoNodeIndicatorBit = 0x8000; |
---|
| 217 | var random15bitNumber = Math.floor( (Math.random() % 1) * Math.pow(2, 15) ); |
---|
| 218 | var leftmost4HexCharacters = (pseudoNodeIndicatorBit | random15bitNumber).toString(HEX_RADIX); |
---|
| 219 | _uuidPseudoNodeString = leftmost4HexCharacters + _generateRandomEightCharacterHexString(); |
---|
| 220 | } |
---|
| 221 | node = _uuidPseudoNodeString; |
---|
| 222 | } |
---|
| 223 | } |
---|
| 224 | if(!_uuidClockSeqString){ |
---|
| 225 | var variantCodeForDCEUuids = 0x8000; // 10--------------, i.e. uses only first two of 16 bits. |
---|
| 226 | var random14bitNumber = Math.floor( (Math.random() % 1) * Math.pow(2, 14) ); |
---|
| 227 | _uuidClockSeqString = (variantCodeForDCEUuids | random14bitNumber).toString(HEX_RADIX); |
---|
| 228 | } |
---|
| 229 | |
---|
| 230 | // Maybe we should think about trying to make the code more readable to |
---|
| 231 | // newcomers by creating a class called "WholeNumber" that encapsulates |
---|
| 232 | // the methods and data structures for working with these arrays that |
---|
| 233 | // hold 4 16-bit numbers? And then these variables below have names |
---|
| 234 | // like "wholeSecondsPerHour" rather than "arraySecondsPerHour"? |
---|
| 235 | var now = new Date(); |
---|
| 236 | var millisecondsSince1970 = now.valueOf(); // milliseconds since midnight 01 January, 1970 UTC. |
---|
| 237 | var nowArray = _get64bitArrayFromFloat(millisecondsSince1970); |
---|
| 238 | if(!_cachedMillisecondsBetween1582and1970){ |
---|
| 239 | var arraySecondsPerHour = _get64bitArrayFromFloat(60 * 60); |
---|
| 240 | var arrayHoursBetween1582and1970 = _get64bitArrayFromFloat(dojox.uuid.generateTimeBasedUuid._generator.GREGORIAN_CHANGE_OFFSET_IN_HOURS); |
---|
| 241 | var arraySecondsBetween1582and1970 = _multiplyTwo64bitArrays(arrayHoursBetween1582and1970, arraySecondsPerHour); |
---|
| 242 | var arrayMillisecondsPerSecond = _get64bitArrayFromFloat(1000); |
---|
| 243 | _cachedMillisecondsBetween1582and1970 = _multiplyTwo64bitArrays(arraySecondsBetween1582and1970, arrayMillisecondsPerSecond); |
---|
| 244 | _cachedHundredNanosecondIntervalsPerMillisecond = _get64bitArrayFromFloat(10000); |
---|
| 245 | } |
---|
| 246 | var arrayMillisecondsSince1970 = nowArray; |
---|
| 247 | var arrayMillisecondsSince1582 = _addTwo64bitArrays(_cachedMillisecondsBetween1582and1970, arrayMillisecondsSince1970); |
---|
| 248 | var arrayHundredNanosecondIntervalsSince1582 = _multiplyTwo64bitArrays(arrayMillisecondsSince1582, _cachedHundredNanosecondIntervalsPerMillisecond); |
---|
| 249 | |
---|
| 250 | if(now.valueOf() == _dateValueOfPreviousUuid){ |
---|
| 251 | arrayHundredNanosecondIntervalsSince1582[3] += _nextIntraMillisecondIncrement; |
---|
| 252 | _carry(arrayHundredNanosecondIntervalsSince1582); |
---|
| 253 | _nextIntraMillisecondIncrement += 1; |
---|
| 254 | if (_nextIntraMillisecondIncrement == 10000) { |
---|
| 255 | // If we've gotten to here, it means we've already generated 10,000 |
---|
| 256 | // UUIDs in this single millisecond, which is the most that the UUID |
---|
| 257 | // timestamp field allows for. So now we'll just sit here and wait |
---|
| 258 | // for a fraction of a millisecond, so as to ensure that the next |
---|
| 259 | // time this method is called there will be a different millisecond |
---|
| 260 | // value in the timestamp field. |
---|
| 261 | while (now.valueOf() == _dateValueOfPreviousUuid) { |
---|
| 262 | now = new Date(); |
---|
| 263 | } |
---|
| 264 | } |
---|
| 265 | }else{ |
---|
| 266 | _dateValueOfPreviousUuid = now.valueOf(); |
---|
| 267 | _nextIntraMillisecondIncrement = 1; |
---|
| 268 | } |
---|
| 269 | |
---|
| 270 | var hexTimeLowLeftHalf = arrayHundredNanosecondIntervalsSince1582[2].toString(HEX_RADIX); |
---|
| 271 | var hexTimeLowRightHalf = arrayHundredNanosecondIntervalsSince1582[3].toString(HEX_RADIX); |
---|
| 272 | var hexTimeLow = _padWithLeadingZeros(hexTimeLowLeftHalf, 4) + _padWithLeadingZeros(hexTimeLowRightHalf, 4); |
---|
| 273 | var hexTimeMid = arrayHundredNanosecondIntervalsSince1582[1].toString(HEX_RADIX); |
---|
| 274 | hexTimeMid = _padWithLeadingZeros(hexTimeMid, 4); |
---|
| 275 | var hexTimeHigh = arrayHundredNanosecondIntervalsSince1582[0].toString(HEX_RADIX); |
---|
| 276 | hexTimeHigh = _padWithLeadingZeros(hexTimeHigh, 3); |
---|
| 277 | var hyphen = "-"; |
---|
| 278 | var versionCodeForTimeBasedUuids = "1"; // binary2hex("0001") |
---|
| 279 | var resultUuid = hexTimeLow + hyphen + hexTimeMid + hyphen + |
---|
| 280 | versionCodeForTimeBasedUuids + hexTimeHigh + hyphen + |
---|
| 281 | _uuidClockSeqString + hyphen + node; |
---|
| 282 | resultUuid = resultUuid.toLowerCase(); |
---|
| 283 | return resultUuid; // String (a 36 character string, which will look something like "b4308fb0-86cd-11da-a72b-0800200c9a66") |
---|
| 284 | } |
---|
| 285 | |
---|
| 286 | }(); |
---|
| 287 | |
---|
| 288 | return dojox.uuid.generateTimeBasedUuid; |
---|
| 289 | |
---|
| 290 | }); |
---|