
Database Connection for the CPS Facilitator Tool

Jos Kraaijeveld

December 9, 2011

1

Contents

1 Introduction 3

2 How to use 3
2.1 Initialization . 3
2.2 Basic queries . 3

2.2.1 Retrieving data . 3
2.2.2 Storing data . 4

2.3 Arguments . 5

3 Specification 6
3.1 Models . 6
3.2 Connectors . 6
3.3 PHPDoc . 7

4 Future Work 7
4.1 Adhere to Open-Closed Principle . 7
4.2 Deal with invalid or missing values . 7

A Class diagram of the models 8

2

1 Introduction

This document describes the database design and implementation for the CPS Facilitator Tool. The goal
is to make sure everyone can communicate with the RDF-based database without having to write queries.
The DBInterface is written in PHP and requires slight PHP knowledge before use. It is heavily based on
initial work by Bas van Nuland.

If you use this framework, you can skip to the ‘How to use’-part of this document (2). If you are planning
to improve this framework, I recommend reading the RDF Primer1 and SPARQL Query Language for RDF2.
A full specification of the current implementation can be found in section 3. The areas I suggest improving
upon first are described in section 4.

2 How to use

2.1 Initialization

Before the database can be used, you should initialize a DatabaseInterface object. This is the only database
class you will use. This is done calling the DatabaseInterface constructor.

$db = new DatabaseInterface();

2.2 Basic queries

2.2.1 Retrieving data

Getting data is done by calling the get method of the DatabaseInterface class. The specification for this
method is as follows.

Function get()
First argument: $type String
Second argument: $arguments Array
Return type: Array/Variable

The return type is an Array of objects with the type specified as the first argument. For instance, if the
first argument is “user”, the function will return an array of User objects. The second argument can be left
out if you want to retrieve all entries of a specific type. Below are a few examples showing the usage of get().
A description of what arguments are possible per type is given in section 2.3.

1http://www.w3.org/TR/rdf-primer/
2http://www.w3.org/TR/rdf-sparql-query/

3

Figure 1: Retrieving all questions and echo their title.

$questions = $db->get("question");

foreach ($questions as $question)

{

echo $question->title;

}

Figure 2: Retrieving all surveys containing questions with IDs q1 and q2, created by the user Jos, printing
all questions in those surveys

//To get all surveys created by the user Jos, we need his UID.

//We first query the database for the User object belonging to Jos.

$userResults = $db->get("user", array("name" => "Jos"));

//Assuming there is a result, the UID is:

$josUID = $userResults[0]->uid;

//Now to get the requested surveys:

$surveys = $db->get("survey", array("questions" => array("q1", "q2"),

"creator" => $josUID));

//And to print all the questions in these surveys:

foreach($surveys as $survey)

{

echo "All the questions in " . $survey->name;

foreach($survey->questions as $question)

{

print_r($question);

}

}

2.2.2 Storing data

Storing data is easy, as long as you stick to using the given PHP Classes. Retrieve these classes by using
the get() function, and pass them as a parameter to the set() function of the DatabaseInterface. This set()
function will determine what type the object is and store it at the correct location. The method overview is
as follows:

Function set()
First argument: $rToolObject Variable

Another important thing to note is that currently it will overwrite a previous object with the same UID

4

in the database. The following examples show how to create new objects and save them, as well as edit old
objects and save them.

Figure 3: Creating a new Answer object and storing this in the database.

//For this example, I choose a random question to answer

$questions = $db->get("question");

$question = $questions[2];

//Note two things:

//1 - If you pass ’null’ as first argument when creating any object

// A new UID will be generated, indicating a new object.

//2 - Depending on the question, there can be multiple answers

// This means the values-argument (third argument) is an array.

$answer = new Answer(null, $question, array("12345", "four"));

//Save the answer in the database

$db->set($answer);

Figure 4: Getting a Survey object from the database and removing the first question. Also alter this question.

//Get the survey

$surveyResults = $db->get("survey", array("uid" => "b91d39e8667372e220bb861b3f94b5bd"));

$survey = surveyResults[0];

//Remove the question

$question = $survey->questions[0];

unset($survey->questions[0]);

//Change the question

$question->title = "New Title";

//Save the survey and question

$db->batchSet(array($survey, $question));

2.3 Arguments

The arguments you can supply when calling the get() function differ greatly per type. Unfortunately, there
is no way around this, so here is a complete overview of arguments per type.

5

Type Argument name Argument type Extra notes

Answer
uid String

question String UID of the question
values Array of Strings

AnswerSet

uid String
survey String UID of the Survey

respondent String UID of the Respondent
answers Array of Strings UIDs of the Answers

Application

uid String
title String

description String
style String

Question

code String
title String
type String

description String
category String

definedanswers Array of Strings String values of possible answers

Respondent/User
uid String

name String
password String Use hashes to store passwords

Session

uid String
title String

creator String UID of the User
datetime String Unix Timestamp. No way to search on intervals (yet).

applications Array of Strings UIDs of the Applications
surveys Array of Strings UIDs of the Surveys

answersets Array of Strings UIDs of the AnswerSets

Survey

uid String
title String

description String
creator String UID of the user that created this survey

questions Array of Strings UIDs of the Questions

Whenever an Array has to be supplied, it will match for results that satisfy all the constraints given in
the array.

3 Specification

3.1 Models

The framework heavily relies on the Object Oriented Programming paradigm, and only allows you to cre-
ate, edit and store data through instances of precreated classes. All these classes inherit from a global
ResearchToolObject class. A UML class diagram of the model classes can be found in Appendix A.

3.2 Connectors

Although the front end developer only uses one general DatabaseInterface, the different files for the different
datatypes are accessed by seperate connectors. A connector has to implement the IConnector interface, which
mainly enforces the get() and set() methods to ensure a connector can perform as expected. The rest of the

6

methods are implemented in the baseclass Connector, which should be extended. In every connector, the
get() and set() methods are different. A get() method builds the querystring based on the given arguments,
then retrieves the data and performs other necessary queries (like retrieving a different object from another
file) to ensure the PHP DataModel is comoplete. A set() method has to store the data accordingly.

3.3 PHPDoc

PHPDoc for the database classes can be found at SVN.

4 Future Work

4.1 Adhere to Open-Closed Principle

At the moment, the DatabaseInterface.php class violates the Open-Closed principle. Every new connector,
four lines need to be added in this class. This is unwanted if new RDF datatypes are added. The same
holds for the method createArguments in this class: extra cases have to be added if more types of arguments
become possible. Adhering to the Open-Closed principle will allow for easier extention and maintenance of
the database-related classes.

4.2 Deal with invalid or missing values

This goes in two parts. Firstly, the database now assumes that given an entry, all the fields for its type are
there and filled in. This is unwanted since it can cause issues with backwards compatability of certain .rdf
files. Secondly, it assumes that fields containing a UID to a different entry actually point to a valid entry.
For instance, a Survey query will try to get a User object as its creator value from the database as well,
assuming it exists. It will break if this user object does not exist.

7

http://svn.tbm.tudelft.nl/TBM-CPS/RESEARCHTOOL/Doc/Backend/PHPDoc/index.html

ResearchToolObject

+$uid

+__construct(in $uid : String = null, in $question : Question = null, in $values : Array = null)

Answer

+$question : Question
+$values : Array

+__construct(in $uid : String = null, in $survey : Survey = null, in $respondent : Respondent = null, in $answers : Array = null)

AnswerSet

+$survey : Survey
+$respondent : Respondent
+$answers : Array

+__construct(in $uid : String = null, in $title : String = null, in $description : String = null, in $style : String = null)

Application

+$title : String
+$description : String
+$style : String

+__construct(in $uid : String = null, in $title : String = null, in $type : String = null, in $description : String = null, in $category : String = null, in $answers : Array = null)

Question

+$title : String
+$type : String
+$description : String
+$category : String
+$answers : Array

+__construct(in $uid : String = null, in $name : String = null, in $password : String = null)

Respondent

+$name : String
+$password : String

+__construct(in $uid : String = null, in $name : String = null, in $password : String = null)

User

+$name : String
+$password : String

+__construct(in $uid : String = null, in $title : String = null, in $creator : User = null, in $datetime : DateTime = null, in $pipeline : Array = null, in $answersets : Array = null)

Session

+$title : String
+$creator : User
+$datetime : DateTime
+$pipeline : Array
+$answersets : Array

+__construct(in $uid : String = null, in $title : String = null, in $description : String = null, in $creator : User = null, in $questions : Array)

Survey

+$title : String
+$description : String
+$creator : User
-$questions : Array

A Class diagram of the models

	Introduction
	How to use
	Initialization
	Basic queries
	Retrieving data
	Storing data

	Arguments

	Specification
	Models
	Connectors
	PHPDoc

	Future Work
	Adhere to Open-Closed Principle
	Deal with invalid or missing values

	Class diagram of the models

