Database Connection for the CPS Facilitator Tool

Jos Kraaijeveld

January 13, 2012

Contents

8.2 Basic queries| e
8.2.1 Retrieving data] L
3.2.2 Storing data] e

8.3 Arguments| e e e

[4 Specification|
4.1 Modelsl. . . .

4.2 Static functions, non-static functions| Lo Lo oL
4.3 Adding to the system|

b.1 Deal with invalid or missing values| o oo

|A Class diagram of the models|

ESEENEENEEN BEN |

J

1 Changelog

13-01-2012: Fixed the issue with Open-Closed, updated documentation accordingly.

2 Introduction

This document describes the database design and implementation for the CPS Facilitator Tool. The goal
is to make sure everyone can communicate with the RDF-based database without having to write queries.
The DBInterface is written in PHP and requires slight PHP knowledge before use. It is heavily based on
initial work by Bas van Nuland.

If you use this framework, you can skip to the ‘How to use’-part of this document . If you are planning
to improve this framework, I recommend reading the RDF Primerﬂ and SPARQL Query Language for RDFﬂ
A full specification of the current implementation can be found in section [d} The areas I suggest improving
upon first are described in section

3 How to use

3.1 Initialization

Before the database can be used, you should remember to import master.php on every page:

require ’classes/master.php’;

3.2 Basic queries
3.2.1 Retrieving data

Getting data is done by calling the get method of the class for which you want to retrieve data. The speci-
fication for this method is the same for every class and is as follows.

Function get()
Second argument: $arguments Array
Return type: Array/Variable

The return type is an Array of objects with the type corresponding to the class you caled it on. For
instance, if you call User::get() you will only get User objects. Below are a few examples showing the usage
of get(). A description of what arguments are possible per type is given in section

Lhttp://www.w3.org/ TR /rdf-primer/
2http://www.w3.org/TR/rdf-sparql-query/

Figure 1: Retrieving all questions and echo their title.

$questions = User::get(array());
foreach ($questions as $question)
{

echo $question->title;

}

Figure 2: Retrieving all surveys containing questions with IDs ql and g2, created by the user Jos, printing
all questions in those surveys

//To get all surveys created by the user Jos, we need his UID.

//We first query the database for the User object belonging to Jos.

$userResults = User::get(array("name" => "Jos"));

//Assuming there is a result, the UID is:

$josUID = $userResults[0]->uid;

//Now to get the requested surveys:

$surveys = Survey::get(array("questions" => array("qi", "q2"),
"creator" => $josUID));

//And to print all the questions in these surveys:

foreach($surveys as $survey)

{
echo "All the questions in " . $survey->name;
foreach($survey->questions as $question)
{
print_r($question) ;
X
3

3.2.2 Storing data

Storing data is easy, as long as you stick to using the given PHP Classes. Retrieve these objects by using
the get() function, and call the save() function of the objects.:

Function save()
Returns: $boolean H succeeded

If the save function returns false, there is an invalid references in that object which needs to be resolved
before saving. This ensures the database is always valid. Another important thing to note is that currently
it will overwrite a previous object with the same UID in the database. The following examples show how to
create new objects and save them, as well as edit old objects and save them.

Figure 3: Creating a new Answer object and storing this in the database.

//For this example, I choose a random question to answer

$questions = Question::get(array());

$question = $questions([2];

//Note two things:

//1 - If you pass ’null’ as first argument when creating any object

// A new UID will be generated, indicating a new object.
//2 - Depending on the question, there can be multiple answers
// This means the values-argument (third argument) is an array.
$answer = new Answer(null, $question, array("12345", "four"));

//Save the answer in the database
if ($answer->save())
echo "Success";

Figure 4: Getting a Survey object from the database and removing the first question. Also alter this question.

//Get the survey

$surveyResults = Survey::get(array("uid" => "b91d39e8667372e220bb861b3£94b5bd")) ;
$survey = surveyResults[0];

//Remove the question

$question = $survey->questions[0];

unset ($survey->questions[0]);

//Change the question

$question->title = "New Title";

//Save the survey and question

$question->save(); $survey->save();

3.3 Arguments

The arguments you can supply when calling the get() function differ greatly per type. Unfortunately, there
is no way around this, so here is a complete overview of arguments per type.

Type

Argument name \ Argument type \ Extra notes

uid String
Answer question String UID of the question
values Array of Strings
uid String
survey String UID of the Survey
AnswerSet respondent String UID of the Respondent
answers Array of Strings | UIDs of the Answers
uid String
.. title String
Application description String
style String
code String
title String
Question type String
description String
category String
definedanswers Array of Strings | String values of possible answers
uid String
Respondent/User name String
password String Use hashes to store passwords
uid String
title String
creator String UID of the User
Session creationdate String Unix Timestamp. No way to search on intervals (yet).
applications Array of Strings | UIDs of the Applications
surveys Array of Strings | UIDs of the Surveys
answersets Array of Strings | UIDs of the AnswerSets
uid String
title String
location String
facilitator String UID of the user that facilitated the session
SessionInstance startime String Unix Timestamp. No way to search on intervals (yet).
endtime String Unix Timestamp. No way to search on intervals (yet).
notes Array of Strings
session String UID of the Session this Instance refers to.
resultset String UID of the ResultSet this Instance has.
uid String
Survey title String
‘ description String
creator String UID of the user that created this survey
questions Array of Strings | UIDs of the Questions

Whenever an Array has to be supplied, it will match for results that satisfy all the constraints given in

the array.

4 Specification
4.1 Models

The framework heavily relies on the Object Oriented Programming paradigm, and only allows you to create,
edit and store data through instances of precreated classes. All these classes inherit from a global Re-
searchToolObject class. A UML class diagram of the model classes can be found in Appendix [A] The most
important thing to note is that references to other objects are not evaluated immediately. Rather, these
classes with references have to override the evaluate() function, which in turn tries to query the database and
resolve those UIDs to model objects. This gives us two advantages: initial queries do not scale exponentially
because of the ’lazy’ evaluation, and the boolean return value notifies us when there exists an incorrect
reference. By evaluating before saving an object, we ensure that there cannot exist invalid values in the
database.

4.2 Static functions, non-static functions

It is important to note that the get() function of each object is static, whilst the save() function is not. This
is to provide a better saving mechanism in the future: tracking when an object gets changed and saving it
automatically. The get() function is static because there is no reason for it to be linked to a specific Object,
only to the type it describes as a whole.

4.3 Adding to the system

Adding support for new datatypes is easy and can be done by extending the ResearchToolObject class and
ensuring the get() and save() methods are implemented correctly. Simply look at the existing classes and
stick to the same idea unless you want to radically change the infrastructure.

4.4 PHPDoc
PHPDoc for the database classes can be found at [SVN.

5 Future Work

5.1 Deal with invalid or missing values

This goes in two parts. Firstly, the database now assumes that given an entry, all the fields for its type are
there and filled in. This is unwanted since it can cause issues with backwards compatability of certain .rdf
files. Secondly, it assumes that fields containing a UID to a different entry actually point to a valid entry.
For instance, a Survey evaluation will try to get a User object as its creator value from the database as well,
assuming it exists. It will return false if this user object does not exist.

http://svn.tbm.tudelft.nl/TBM-CPS/RESEARCHTOOL/Doc/Backend/PHPDoc/index.html

A Class diagram of the models

Answer

ResearchToolObject
+Squestion : Question

+suid +Svalues : Array

+__construct(in Suid : String = null, in Squestion : Question = null, in Svalues : Array = null)

JAN

AnswerSet

+$survey : Survey

+Srespondent : Respondent

+Sanswers : Array

+__construct(in Suid : String = null, in Ssurvey : Survey = null, in $respondent : Respondent = null, in Sanswers : Array = null)

Application

+Stitle : String

+Sdescription : String

+S$style : String

+__construct(in Suid : String = null, in Stitle : String = null, in $description : String = null, in Sstyle : String = null)

Survey

+Stitle : String

+Sdescription : String

+Screator : User

-Squestions : Array

+__construct(in Suid : String = null, in Stitle : String = null, in Sdescription : String = null, in Screator : User = null, in Squestions : Array)

Respondent

+Sname : String
+Spassword : String

+__construct(in Suid : String = null, in $Sname : String = null, in $password : String = null)

User

+Sname : String
+Spassword : String

+__construct(in Suid : String = null, in Sname : String = null, in Spassword : String = null)

Session

+Stitle : String
+Screator : User
—+Sdatetime : DateTime
+Spipeline : Array
+Sanswersets : Array

+__construct(in Suid : String = null, in Stitle : String = null, in Screator : User = null, in Sdatetime : DateTime = null, in Spipeline : Array = null, in Sanswersets : Array = null)

Question

+Stitle : String

+Stype : String

—1+Sdescription : String

+Scategory : String

+Sanswers : Array

+__construct(in Suid : String = null, in Stitle : String = null, in Stype : String = null, in Sdescription : String = null, in Scategory : String = null, in Sanswers : Array = null)

	Changelog
	Introduction
	How to use
	Initialization
	Basic queries
	Retrieving data
	Storing data

	Arguments

	Specification
	Models
	Static functions, non-static functions
	Adding to the system
	PHPDoc

	Future Work
	Deal with invalid or missing values

	Class diagram of the models

