
Database Connection for the CPS Facilitator Tool

Jos Kraaijeveld

March 1, 2012

1

Contents

1 Changelog 3

2 Introduction 3

3 How to use 3
3.1 Initialization . 3
3.2 Basic queries . 3

3.2.1 Retrieving data . 3
3.2.2 Storing data . 4

3.3 Arguments . 5

4 Specification 7
4.1 Models . 7
4.2 Static functions, non-static functions . 7
4.3 Adding to the system . 7
4.4 PHPDoc . 7

5 Future Work 7
5.1 Deal with invalid or missing values . 7

A Class diagram of the models 8

2

1 Changelog

13-01-2012 : Fixed the issue with Open-Closed, updated documentation accordingly.

2 Introduction

This document describes the database design and implementation for the CPS Facilitator Tool. The goal
is to make sure everyone can communicate with the RDF-based database without having to write queries.
The DBInterface is written in PHP and requires slight PHP knowledge before use. It is heavily based on
initial work by Bas van Nuland.

If you use this framework, you can skip to the ‘How to use’-part of this document (3). If you are planning
to improve this framework, I recommend reading the RDF Primer1 and SPARQL Query Language for RDF2.
A full specification of the current implementation can be found in section 4. The areas I suggest improving
upon first are described in section 5.

3 How to use

3.1 Initialization

Before the database can be used, you should remember to import master.php on every page:

require ’classes/master.php’;

3.2 Basic queries

3.2.1 Retrieving data

Getting data is done by calling the get method of the class for which you want to retrieve data. The speci-
fication for this method is the same for every class and is as follows.

Function get()
Second argument: $arguments Array
Return type: Array/Variable

The return type is an Array of objects with the type corresponding to the class you caled it on. For
instance, if you call User::get() you will only get User objects. Below are a few examples showing the usage
of get(). A description of what arguments are possible per type is given in section 3.3.

1http://www.w3.org/TR/rdf-primer/
2http://www.w3.org/TR/rdf-sparql-query/

3

Figure 1: Retrieving all questions and echo their title.

$questions = User::get(array());

foreach ($questions as $question)

{

echo $question->title;

}

Figure 2: Retrieving all surveys containing questions with UIDs q1 and q2, created by the user Jos, printing
all questions in those surveys

//To get all surveys created by the user Jos, we need his UID.

//We first query the database for the User object belonging to Jos.

$userResults = User::get(array("name" => "Jos"));

//Assuming there is a result, the UID is:

$josUID = $userResults[0]->uid;

//Now to get the requested surveys:

$surveys = Survey::get(array("questions" => array("q1", "q2"),

"creator" => $josUID));

//And to print all the questions in these surveys:

foreach($surveys as $survey)

{

echo "All the questions in " . $survey->name;

foreach($survey->questions as $question)

{

print_r($question);

}

}

3.2.2 Storing data

Storing data is easy, as long as you stick to using the given PHP Classes. Retrieve these objects by using
the get() function, and call the save() function of the objects.:

Function save()
Returns: $boolean succeeded

If the save function returns false, there is an invalid references in that object which needs to be resolved
before saving. This ensures the database is always valid. Another important thing to note is that currently
it will overwrite a previous object with the same UID in the database. The following examples show how to
create new objects and save them, as well as edit old objects and save them.

4

Figure 3: Creating a new Answer object and storing this in the database.

//For this example, I choose a random question to answer

$questions = Question::get(array());

$question = $questions[2];

//Note two things:

//1 - If you pass ’null’ as first argument when creating any object

// A new UID will be generated, indicating a new object.

//2 - Depending on the question, there can be multiple answers

// This means the values-argument (third argument) is an array.

$answer = new Answer(null, $question, array("12345", "four"));

//Save the answer in the database

if($answer->save())

echo "Success";

Figure 4: Getting a Survey object from the database and removing the first question. Also alter this question.

//Get the survey

$surveyResults = Survey::get(array("uid" => "b91d39e8667372e220bb861b3f94b5bd"));

$survey = surveyResults[0];

//Remove the question

$question = $survey->questions[0];

unset($survey->questions[0]);

//Change the question

$question->title = "New Title";

//Save the survey and question

$question->save(); $survey->save();

3.3 Arguments

The arguments you can supply when calling the get() function differ greatly per type. Unfortunately, there
is no way around this, so here is a complete overview of arguments per type.

5

Type Argument name Argument type Extra notes

Answer
uid String

question String UID of the question
values Array of Strings

AnswerSet

uid String
survey String UID of the Survey

respondent String UID of the Respondent
datetime String Unix Timestamp.
answers Array of Strings UIDs of the Answers

Application

uid String
title String

description String
style String

Question

uid String
code String
title String
type String

description String
category String

definedanswers Array of Strings String values of possible answers

Respondent/User

uid String
email String

passwordHash String Use hashes to store passwords
passwordSalt String

Session

uid String
title String

creator String UID of the User
creationdate String Unix Timestamp. No way to search on intervals (yet).
applications Array of Strings UIDs of the Applications

surveys Array of Strings UIDs of the Surveys

SessionInstance

uid String
title String

location String
facilitator String UID of the user that facilitated the session
startime String Unix Timestamp. No way to search on intervals (yet).
endtime String Unix Timestamp. No way to search on intervals (yet).

notes Array of Strings
session String UID of the Session this Instance refers to.

applicationinstances Array of Strings UIDs of the ApplicationInstances
surveyinstances Array of Strings UIDs of the SurveyInstances

Survey

uid String
title String

description String
creator String UID of the user that created this survey

questions Array of Strings UIDs of the Questions

ApplicationInstance

uid String
of application String UID of the corresponding application

startime String Unix Timestamp. No way to search on intervals (yet).
endtime String Unix Timestamp. No way to search on intervals (yet).

open Integer 1 for true, 0 for false.
playerresults Array of Strings Not yet implemented.
groupresults Array of Strings Not yet implemented.

periodicresults Array of Strings Not yet implemented.

SurveyInstance

uid String
of survey String UID of the Survey
startime String Unix Timestamp. No way to search on intervals (yet).
endtime String Unix Timestamp. No way to search on intervals (yet).

open Integer 1 for true, 0 for false.
preset answers Array of Strings Array with Answer UIDs to define default answers.

answersets Array of Strings Array with AnswerSet UIDs

6

Whenever an Array has to be supplied, it will match for results that satisfy all the constraints given in
the array.

4 Specification

4.1 Models

The framework heavily relies on the Object Oriented Programming paradigm, and only allows you to create,
edit and store data through instances of precreated classes. All these classes inherit from a global Re-
searchToolObject class. A UML class diagram of the model classes can be found in Appendix A. The most
important thing to note is that references to other objects are not evaluated immediately. Rather, these
classes with references have to override the evaluate() function, which in turn tries to query the database and
resolve those UIDs to model objects. This gives us two advantages: initial queries do not scale exponentially
because of the ’lazy’ evaluation, and the boolean return value notifies us when there exists an incorrect
reference. By evaluating before saving an object, we ensure that there cannot exist invalid values in the
database.

4.2 Static functions, non-static functions

It is important to note that the get() function of each object is static, whilst the save() function is not. This
is to provide a better saving mechanism in the future: tracking when an object gets changed and saving it
automatically. The get() function is static because there is no reason for it to be linked to a specific Object,
only to the type it describes as a whole.

4.3 Adding to the system

Adding support for new datatypes is easy and can be done by extending the ResearchToolObject class and
ensuring the get() and save() methods are implemented correctly. Simply look at the existing classes and
stick to the same idea unless you want to radically change the infrastructure.

4.4 PHPDoc

PHPDoc for the database classes can be found at SVN.

5 Future Work

5.1 Deal with invalid or missing values

This goes in two parts. Firstly, the database now assumes that given an entry, all the fields for its type are
there and filled in. This is unwanted since it can cause issues with backwards compatability of certain .rdf
files. Secondly, it assumes that fields containing a UID to a different entry actually point to a valid entry.
For instance, a Survey evaluation will try to get a User object as its creator value from the database as well,
assuming it exists. It will return false if this user object does not exist.

7

http://svn.tbm.tudelft.nl/TBM-CPS/RESEARCHTOOL/Doc/Backend/PHPDoc/index.html

ResearchToolObject

+$uid

+__construct(in $uid : String = null, in $question : Question = null, in $values : Array = null)

Answer

+$question : Question
+$values : Array

+__construct(in $uid : String = null, in $survey : Survey = null, in $respondent : Respondent = null, in $answers : Array = null)

AnswerSet

+$survey : Survey
+$respondent : Respondent
+$answers : Array

+__construct(in $uid : String = null, in $title : String = null, in $description : String = null, in $style : String = null)

Application

+$title : String
+$description : String
+$style : String

+__construct(in $uid : String = null, in $title : String = null, in $type : String = null, in $description : String = null, in $category : String = null, in $answers : Array = null)

Question

+$title : String
+$type : String
+$description : String
+$category : String
+$answers : Array

+__construct(in $uid : String = null, in $name : String = null, in $password : String = null)

Respondent

+$name : String
+$password : String

+__construct(in $uid : String = null, in $name : String = null, in $password : String = null)

User

+$name : String
+$password : String

+__construct(in $uid : String = null, in $title : String = null, in $creator : User = null, in $datetime : DateTime = null, in $pipeline : Array = null, in $answersets : Array = null)

Session

+$title : String
+$creator : User
+$datetime : DateTime
+$pipeline : Array
+$answersets : Array

+__construct(in $uid : String = null, in $title : String = null, in $description : String = null, in $creator : User = null, in $questions : Array)

Survey

+$title : String
+$description : String
+$creator : User
-$questions : Array

A Class diagram of the models

	Changelog
	Introduction
	How to use
	Initialization
	Basic queries
	Retrieving data
	Storing data

	Arguments

	Specification
	Models
	Static functions, non-static functions
	Adding to the system
	PHPDoc

	Future Work
	Deal with invalid or missing values

	Class diagram of the models

